Helix Engineering Software

Helix Technologies specialises in Engineering Software Development. We have a number of standard programs for Conveyor Design, Conveyor Dynamic Analysis, DEM Chute Design, Pipe Network Analysis, Pump Selections, Vee Belt & Chain Drives and Share Portfolio Management and Project Investment Analysis

🕳 Helix delta-T6 Conveyor Design

Helix delta-T6 is a powerful Windows® based belt conveyor design tool and it includes conveyor equipment databases for Belts, Idlers, Pulleys, Motors, Gearboxes, Fluid Couplings, Holdbacks, Brakes and Couplings. Helix Technologies' research and development of this software began in 1992 and delta-T now has more than a thousand users in 25 countries who depend on the program to provide consistent, accurate and cost effective belt conveyor and material handling designs.

Dynamic Analysis 2D Belt Tensions

Download brochure (pdf file) (/DownloadFiles/Helixdelta-T5Brochure02.pdf)

More delta-T6 ...

Helix DEM Chute Design

Helix DEM Chute Design is an engineering design tool which combines CAD Drawing and 3D Modeling with a powerful calculation engine to predict the motion of particles in a transfer chute. The program allows the user to quickly build a model of a bulk material transfer chute station and then to perform calculations incorporating the **Discrete Element Method** of predicting particle motion through the chute. The motion of the particles is displayed in a 3 dimensional model on the computer screen and the design engineer can quickly add, modify or move the chute surfaces to allow the material to flow through the transfer efficiently. The program eliminates the need for the design engineer to guess what the material flow trajectories will be in the transfer.

Press play button to view video below..

Download brochure (2.7Mb PDF file) (/DownloadFiles/Helix Chute Design Brochure.pdf)

Chute Design overview

More chute videos ...

📴 Helix delta-Q Pipe Networks

Helix delta-Q is a powerful tool for engineers and equipment suppliers to quickly and easily design and optimise pipe networks for compressible and incompressible fluids. You can produce economically and technically sound pipe system designs in a very short time.

You can calculate friction losses and pressure drop in pipes and fittings for Liquids, Slurries and Gases. Model complex process flow pipe networks and solve for unknown flow rates and node pressures at the press of a button. Retrieve data from user accessible databases for Liquids, Slurries, Gasses, Pumps, Pipes and Fittings or add your own data.

DeltaQ Online Pipe Network Software

Helix Website -

Download brochure (pdf) (/DownloadFiles/Delta-QBrochure.pdf)

More Pipe Networks ...

Conveyor Design, Conveyor Dynamic Analysis, Belt Conveyors, DEM Chute Design, Discrete Element Method Transfer Chute Design, Particle Flow, Pipe Network Analysis, Piping System Design, Pump Selection Software, Pulleys, Vee Drives. transportador, correia, roletes, Fluid Flow, Liquids, slurries, Pump Selection Software, piping design software, pipe network analysis software, fluid flow software, pipe flow software, water flow software, fluid flow analysis software, gas flow software, settling slurry, bingham plastic, isothermal gas flow, modified Darcy gas flow, flow calculation software, pipe flow analysis software, gas flow analysis software, air flow, slurry flow, Liquid, slurry and gas Pipe Flow and Head Loss, Solve Complex Pipe Networks, Design Pipe and Pump systems, Pump Selections and Database, Applications for Process Design, Slurry Systems, Medical Gas Distribution systems, Fire Protection system design, Air conditioning, Dust Extraction, Compressed Air Systems,

🕳 HELIX delta-T for Windows®

HELIX delta-T is a powerful computer software package developed to assist materials handling design engineers and equipment suppliers with conveyor design and optimisation. Helix Technologies' research and development of this software began in 1992 and delta-T now has more than a thousand users in 25 countries who depend on the program to provide consistent, accurate and cost effective belt conveyor and material handling designs. Features of the new delta-T version 6 program include:

- Automatic Selection of Belt and Tension, Power Calculations.
- Equipment Selection from Databases for Belts, Idlers, Pulleys & Shafts, Gearboxes, Motors, Fluid Couplings, Brakes etc.
- New Equipment databases for Shaft and Drive couplings and conveyor holdbacks have been added in version 6.
- Draw a sketch of the conveyor Profile and also view a scale drawing and a 3D model of the conveyor use Drag and Drop to add Pulleys, Drives, loading Hoppers
- Calculate concave and convex Vertical Curves including belt lift off radii, edge tensions and centre tensions
- Horizontal Curve calculations design curved conveyors including banking angle and belt drift calculations for all operating conditions
- Calculate using CEMA, ISO 5048 or the new Viscoelastic method for low resistance rubber belts
- Add any number of Conveyor Pulleys, Drives, Loading points, Trippers, Brakes etc
- Over 70 reports can be viewed, printed or exported to Word, PDF files or Excel etc.
- You can merge multiple selected reports into a single PDF file
- Delta-T6 has been completely re-written in Microsoft Visual Studio® and uses the latest software development tools from Microsoft. It is written in a development language called C# and uses the MS Common Language Runtime compiled for .Net with xml data. This technology is the latest available from Microsoft and this makes it compatible with the latest operating systems including Windows® XP, Vista® and Windows® 7, 8 and also 32bit and 64bit systems.
- New Features in Helix delta-T6 (/DownloadFiles/Helix_delta-T6_Conveyor_Program_New_Features.pdf)

Quick introduction to Helix delta-T6 video from youtube

Dynamic analysis module

Helix delta-T has a full flexible body conveyor dynamic analysis version.

Helix Website - Delta-T6 Conveyor Design Overview

The Dynamic Analysis version calculates the transient belt Tensions and Velocities during starting and stopping of a conveyor. It can model the conveyor belt transient behaviour during Starting Fully Loaded, Starting Empty, Stopping Fully Loaded and Stopping Empty. The program allows the user to input any number of Drives or Brakes and allows for input of Drive Torque / Speed curves, Delay times, Braking Torques, Flywheels and inertia effects. After the Dynamic Calculations have been performed, the user can view and Print two dimensional and surface plot three dimensional graphs for Belt Tensions, Belt Velocities, Strain rates and Takeup movement versus time step for all points along the conveyor.

The following is a Helix delta-T6 sample Dynamic Analysis report - file size is 6Mb (/DownloadFiles/Helix_Sample_CV202_Conveyor_Design_Report_Dynamic_Analysis.zip)

Helix delta-T has been used as the design tool and proven in many hundreds of real conveyor installations in more than 25 countries around the world for more than 23 years. The latest version Helix delta-T 6 brings you even more power and flexibility in your conveyor designs.

The program will automatically calculate the belt tensions in the system, select a suitable belt from the database, calculate the pulley and shaft sizes required, select a suitable electric motor, fluid coupling and gearbox from the databases, calculate the idler shaft deflections and bearing life and then present the full conveyor design in reports which can be viewed, printed or exported to Word for Windows®, Excel®, PDF® files and other applications.

Belt tensions can be viewed graphically, and the Calc section provides useful procedures for calculating discharge trajectories, hoper pull-out forces, vertical curve radii, horizontal curve banking angles and belt drift, trough transitions distances and other frequently performed routines. Context sensitive on screen Help will guide you through the operating procedures and provide the formulae used in the calculations.

You can also create and view a 3D model of the conveyor. The program also allows you to dynamically calculate vertical and Horizontal curve geometry for the conveyor. In addition, delta-T provides an in-depth analysis of conveyor belt tensions under different operating conditions such as running fully loaded, running empty, starting fully loaded, starting empty, braking fully loaded, braking empty and coasting. A new sketch facility allows users to sketch the conveyor profile and enter data in tabular format.

Dynamic analysis 2D and 3D graphs

2D Belt Tensions

3D Belt Tensions

Helix Website - Delta-T6 Conveyor Design Overview

View a Delta-T6 Conveyor Design Brochure- pdf (/DownloadFiles/Helixdelta-T5Brochure02.pdf)

View a Dynamic Analysis Case Study - pdf (/DownloadFiles/ConveyorDynamicAnalysisCaseStudy.pdf)

View a PDF file brochure on the Dynamic Analysis module - pdf (/DownloadFiles/T5DynBrochWeb.pdf)

Equipment Databases ...

HELIX delta-T Equipment Databases 👞

HELIX delta-T6 has extensive equipment databases supplied with the program. These files contain valuable information obtained directly from leading equipment suppliers. Having this data available ensures that the conveyor designs produced and equipment selected will be suitable for the conveyor installation. The equipment selection process for Belts, Motors, Gearboxes, Fluid Couplings, Shaft Couplings, Holdbacks, Idlers and Brakes are based on the manufacturer's selection procedures and this ensures reliable equipment selection.

Databases for Belts, Gearboxes, Fluid Couplings, Starters, Idlers, Motors, Shaft Couplings, Holdbacks, Brakes and Materials

Helix delta-T is provided with hundreds of different materials and thousands of items of equipment ranging from Belts and Gearboxes to Motors and Disc Brakes. delta-T is not only a belt tension calculator - it has built in intelligence which allows it to select the right equipment from the comprehensive database.

Hel File	ix delta-T	Materials Dat	tabase	Same Ca	out : 1. Paterna	an (. S. Reads)		
Tue	 < 1 	of 322) 🕅 🕂 🕂 🗙 🖓 Copy C	ategorie	es	🗸 🏠 Copy Mat	erial Search	
Materia	als Table	Material Details	3					
	No	Category	Description	Metric	Low Bulk Density	High Bulk Density	LumpSize	SurchargeAngle
•	0	General	Aggregate Granite -19mm cr	1	1280	1440	19	20
	1	General	ALFALFA MEAL	1	270	270	3	10
	2	General	ALFALFA PELLETS	1	660	690	12	10
	3	General	ALFALFA SEED	1	160	240	3	10
	4	General	ALMONDS	1	450	480	10	25
	5	General	ALUM FINE	1	720	800	3	25
	6	General	ALUM LUMPY	V	800	960	15	25
•	1	i		1	1	1	1	•
\Use	rs\Peter\E)ocuments\Vi	sual Studio 2008\Projects\Delt	taT6\De	ltaT6\Data\Materia	ls\General Materials.	xml	

Example of Material Database form

Add your own data to the Database

It is easy to add your own data or to import it from Excel® or text files. delta-T contains many different manufacturers catalogues and can save the user many hours of searching by providing equipment information at the click of a button.

Example of Idler Database detail view tab sheet

File Data Repo	s Database orts <u>H</u> elp	A			
€	of 1674 📔 🕨	🕂 🛠 🛛 Copy Record	Idler Category		-
dler Table Idler Detai	s				
Idler Details Category	Sandvik Carry		Optional Details Drawing No.		
Description	Senes IU 3 Roll Ca	my Tuz Plain Offset	Face to Support Dim	13	mm
Series	10		Face to Brg Dim	27.1	mm
Belt Width	350	mm	Idler Set Mass	11.8	kg
No of Rolls	3		Price	\$0.00	
Roll Diameter	102	mm	User Data		
Trough Angle	20	deg			
Bearing Designation	6204				
Bearing C Rating	12700	Ν			~
Shaft Diameter	20	mm		133	<u> </u>
Bearing Type	Ball 👻				
Roll Face Width	133	mm		··+·	
Bearing Centres	78.8	N	ť	70.0	۰ ۱
Shaft Support Ctrs	159	mm		/8.8	-
Idler Rotating Mass	3.9	mm			
Allowable Shaft Defl.	8				
Frame Fixing Width	600	mm			
				133	
				159	
:\Users\Peter\Docur	nents\Visual Studi	o 2008\Projects\DeltaT6\I	DeltaT6\Data\Idlers\Sa	andvik Idlers.xml	

Samples of other database files such as Belts, Brakes, Couplings, Motors, Gearboxes and Starters follow

Belt Database Table

1	< 1	of 347 🕨 🔰	🕂 🗙 Copy Record Belt Categori	es		- 🌒 Copy B	elt	
Т	able Belt	Details Belt Widths Belt	Trough Angles					
	No	Belt Category	Belt Description	Metric Units	Allow Selection	Belt Class	Belt Strength kN/m	Allowable Tension F
	0	Apex CoalMaster	PN150-160 plain weave	V	V	PN630/4	630	72
	1	Apex CoalMaster	PN150-160 plain weave	V	v	PN800/5	800	96
	2	Apex CoalMaster	PN200-220 plain weave	1	V	PN800/4	800	90
	3	Apex CoalMaster	PN200-220 plain weave	V	V	PN1000/5	1000	120
	4	Apex CoalMaster	PN200-220 plain weave	1	v	PN1200/6	1200	150
	5	Apex CoalMaster	PN250 plain weave	V	V	PN1000/4	1000	112
	6	Apex CoalMaster	PN250 plain weave	V	v	PN1250/5	1250	150
	7	Apex CoalMaster	PN250 plain weave	1	v	PN1500/6	1500	187
	8	Apex CoalMaster	PN300-315 plain weave	V	V	PN1250/4	1250	140
	9	Apex CoalMaster	PN300-315 plain weave	V	V	PN1500/5	1500	180
	10	Apex CoalMaster	PN315-375 Crow's foot weave	V	V	PN1120/3	1120	100
		III	1	1	1	1	1	

Belt Database Detail

Helix del	lta-T Belts D	atabase	in the second	AND PROPERTY.						
<u>File</u> <u>D</u> a	ta Report	ts <u>H</u> elp								
M 4 9	9 of	347 🕨 🕨	+ ×	Copy Record Be	lt Categori	es			- 🔍 Cop	oy Belt
elt Table	Belt Details	Belt Widths B	elt Trough	Angles						
Belt Detail Belt Categ	s jory	Apex CoalMaste	er							
Belt Descr	ription	PN300-315 plai	n weave							
Belt Class		PN1250/4								
Plies		4	V	Metric	0	r 10.11				
Fibre		Fabric 👻	V	Allow Selection		ptional Details - arcass Price		\$0.00		
Belt Stength 1			kN/m		Cover Price					
Rated Ter	Rated Tension		kN/m		Co	ord Diameter	0	mm		
Carcass T	hickness	7.4	mm		Cord Pitch				mm	
Carcass M	lass	11.7	ka/m		N	umber of Cords		0		
Cover Rel	ative Density	1.4	, itg/iii							
Belt Modu	lus	12000	kN/m							
- Minimum	Pulley Diam	eters		Maximum Load	Support Bel	t Widths at Mat	erial Density –			
Minimu	m Diameters	for Pulleys Type Tension	A, B & C	Density	800	1200	1600	2400	300	0
di xe o	A T	D.T.		Max Belt Width	2500	2500	2300	2100	19	900
100%	A Type	в Type (Type 500							
100%	0% 800 630 500 Minimum belt w		Minimum belt wi	Ith for correct empty belt troughing		oughing				
60%	630	000	400	Trough Angle	20°	35°	45°			
30%	500	400	400	Min Belt Width	/50	800	1000			

Brakes Database

Helix delta-T Brakes Data File Data Reports	abase Help	GRO B	Pb .	
	▶ N + >	Copy F	Record Brake Categories	· _
Brake Table Brake Details				
Brake Details				
Brake Category	Svendborg BSF	H 200		
Brake Description	Svendborg			
Caliper	BSFH 202			
Minimum Clamping Force	2000	Ν	Metric	
Maximum Clamping Force	3500	Ν	Allow Selection	
Loss of Force per 1 mm	5	% per mm		
Pad offset from Rim	60	mm		
Optional Details				
Maximum Air Gap	3	mm	Mass 26	kg
No. of Springs			Price \$0.00	
Operating Pressure	55	kPa		
C:\Users\Peter\Documents\'	Visual Studio 200	5\Projects	DeltaT6\DeltaT6\Data\Bra	kes\All Brakes.xml

Couplings Database

ile	<u>D</u> ata	Reports <u>H</u> elp								
•	1	of 73 🕨 🔰 🚽	🕨 🗙 🕴 Copy	y Record Sł	aft Coupling Cate	gories			-	
aft C	oupling T	able Shaft Coupling Detai	s							
	No	Category	Make	Model	Туре	Metric	Allow Selection	Torque	Service Factor	A 10
	0	David Brown Cone-Ring	David Brown	MC030	Pin & Buffer	1	V	110	1.5	
	2	David Brown Cone-Ring	David Brown	MC038	Pin & Buffer	1	V	190	1.5	_
	3	David Brown Cone-Ring	David Brown	MC042	Pin & Buffer	1	V	290	1.5	
	4	David Brown Cone-Ring	David Brown	MC048	Pin & Buffer	1	v	480	1.5	_
	5	David Brown Cone-Ring	David Brown	MC058	Pin & Buffer	1	v	760	1.5	_
	6	David Brown Cone-Ring	David Brown	MC070	Pin & Buffer	1	V	1000	1.5	
	7	David Brown Cone-Ring	David Brown	MC075	Pin & Buffer	V	V	2600	1.5	
	8	David Brown Cone-Ring	David Brown	MC085	Pin & Buffer	V	V	3500	1.5	
	10	David Brown Cone-Ring	David Brown	MC105	Pin & Buffer	V	V	5300	1.5	-
-									•	

Gearbox Database

le <u>D</u> ata Reports	<u>H</u> elp				
● 8345 of 8	577 🕨 🔰	⊕ × 0	Copy Record Ge	arbox Categories	
arbox Table Gearbox	Details				
Gearbox Details					
Gearbox Category	SEW Eurodrive				
Gearbox Description	SEW Eurodrive				
Туре	Bevel Helical				
Code			Metric		
Size		X3KS320	✓ Allow Sele	ection	
No of Stages	3				
Ratio	18				
Torque Rating	175000	Nm			
Maximum Input Speed	1800	rpm			
Minimum Input Speed	500	rpm			
Moment of Inertia	6.4941	kg-m2			
Optional Details					
Input Shaft Diameter	100	mm	Efficiency	95.5	%
Output Shaft Diameter	240	mm	Mass	8900	kg
Hollow Shaft ID		mm	Price	\$0.00	
Parallel Shafts		Right /	Angle Shafts	Shaft Mounte	d

Motors Database

File	Data	Reports Help	0							
۹.	∢ 1	of 664 🛛 🕨	🕅 🕂 🗙 Copy Reco	ord Moto	or Categories			- 0	Copy Motor	
otor	Table M	otor Details								
	No	Category	Description	Metric	Allow Selection	Voltage	Poles	Power Rating	Speed	Frame
	0	ABB 690V	ABB SQ 690V Motor	~	V	690	4	315	1489	M3BP
	1	ABB 690V	ABB SQ 690V Motor	V	V	690	4	355	1488	M3BP
	2	ABB 690V	ABB SQ 690V Motor	V	V	690	4	400	1490	M3BP
	3	ABB 690V	ABB SQ 690V Motor	V	V	690	4	450	1490	M3BP
	4	ABB 690V	ABB SQ 690V Motor	V	V	690	4	500	1491	M3BP
	5	ABB 690V	ABB SQ 690V Motor	V	V	690	4	560	1491	M3BP
	6	ABB 690V	ABB SQ 690V Motor	V	V	690	4	630	1492	M3BP
	7	ABB 690V	ABB SQ 690V Motor	V	V	690	4	710	1492	M3BP
	8	ABB 690V	ABB SQ 690V Motor	V	V	690	6	500	985	M3BP
	9	ABB 690V	ABB SQ 690V Motor	V	V	690	6	560	985	M3BP
	10	ABB 690V	ABB SQ 690V Motor	V	V	690	6	630	985	M3BP
				[mail		000	· ·	710	005	4

Pulley Database

ile Iley	<u>D</u> ata Shells Tab	Reports <u>H</u> elp	p /idths Pulley Shafts							
1	4 2	of 101	> > > > > > > > > > > > > > > > > > >							
	No	Description	Shell Diameter 🔺	Shell Thickness	End Disc Thickness	Metric	Allow	Cost	Drawing No	ľ
	53		840	20	50	1	V	12		1
	98		850	17	70	1	v	12	W999-M-049	1
	54		890	30	98	V	1	12		Ш
	55	HI Type 10CM	895	14	80	V	V	12		11
	56		900	22	78	V		12		11
	100		900	22	70	V	V	12	W999-M-050	
	57	PI 7640881	914	1	1	V		12	Dead shaft	
	58		914	22	78	V		12		11
	59	PI 7641103	914	23	55	1	v	12	Y	11
	60	PI 7641152	914	32	80	V		12		1
	61		960	22	50		V	12		1
	62		976	22	50			12		1

C:\Users\Peter\Documents\Visual Studio 2005\Projects\DeltaT6\DeltaT6\Data\Pulleys\General Pulleys.xml

Starters Database

Database for VVVF Variable Speed Starters

Heli				• •									
, inclu	x delta-	T Dynamic Analy	rsis Starters and Brakes Datab	oase									
<u>F</u> ile	<u>D</u> ata	Reports <u>H</u> el	ip										
14	4 4	of 24 🕨 🕨	🕨 🕂 Starter Categori	es				-					
Starters	Table	Sample Curves											
Start	ers / Bra	akes 🛛 🛅 Copy S	itarter / Brake 🐰 Delete Starl	ter			1	∾ Add Mi	irror Curve 🕌	Adjust Torque	🛃 Adjust Speed	d 💧 Adjust	Tim
	No	Category	Description	Туре		Max		No	Starter	No Speed %	Torque %	Time	
	0	ABB Motors	ABB 315kW Motor DOL Star	Torque-Speed	•	150		90	4	0	0	0.012	
	2	Toshiba Mot	Toshiba 250kW 4 pole motor	Torque-Speed	-	150		91	4	5	0	2.4	
	3	VVVF Variabl	Typical start	Speed-Time	-	150		92	4	5	0	21.6	
•	4	VVVF Variabl	Typical start	Speed-Time] -	150		93	4	5.2	0	24	
	5	Old T5 map 1	Test only	Torque-Speed	•	150		94	4	5.8	0	26.4	
	6	Harrison 30 s	Cyclodal Front S curve 30 se	Speed-Time	•	150 •	-	95	4	6.9	0	28.8	
•						- F -		96	4	8.4	0	31.2	
			Starter / Brake Performan	nce Graph - Typic	al sta	rt				3D Graph	Red	Iraw	
	100 -		Starter / Brake Performar Speed	nce Graph - Typic I-Time	al sta	rt				3D Graph Smooth G Interpolat Smoothing	iraph e	iraw	
ł	90		Starter / Brake Performar Speed	nce Graph - Typic I-Time	al sta	rt				3D Graph Smooth G Interpolat Smoothing H	iraph e Factor 6	Iraw	
,	100 90 80		Starter / Brake Performar Speed	nce Graph - Typic I-Time	al sta	rt				3D Graph Smooth G Interpolat Smoothing I Graph line v	àraph e Factor 6 🜩 ridth 2 🜩	Iraw	
oad	100 90 80 70		Starter / Brake Performar Speed	nce Graph - Typic I-Time	al sta	rt				 3D Graph Smooth G Interpolat Smoothing I Graph line v 	iraph e factor 6 1	Iraw	
Full Load	100 90 80 70 60		Starter / Brake Performar Speed	nce Graph - Typic I-Time	al sta	rt				 3D Graph Smooth G Interpolat Smoothing I Graph line w 	iraph e Factor 6 💌 ridth 2 🐑	Iraw	
d % Full Load	100 90 80 70 60 50		Starter / Brake Performar Speed	nce Graph - Typic I-Time	al sta	rt				 3D Graph Smooth G Interpolat Smoothing I Graph line v 	iraph e Factor 6 (A) ridth 2 (A)	Iraw	
Speed % Full Load	100 90 80 70 50 40		Starter / Brake Performar Speed	nce Graph - Typic I-Time	al sta	rt				 3D Graph Smooth G Interpolat Smoothing I Graph line v 	iraph e Factor 6 (a) ridth 2 (a)	Iraw	
Speed % Full Load	100 90 80 70 60 50 40 30		Starter / Brake Performar Speed	nce Graph - Typic I-Time	al sta	rt				3D Graph Smooth C Interpolat Smoothing I Graph line v	iraph e factor 6 10 nidth 2 10	Iraw	
Speed % Full Load	100 90 80 70 60 50 40 30 20		Starter / Brake Performar Speed	nce Graph - Typic I-Time	alsta	rt				3D Graph Smooth C Interpolat Smoothing I Graph line v	iraph e factor 6 10 ridth 2 10	Iraw	
Speed % Full Load	100 90 80 70 60 50 40 30 20 10		Starter / Brake Performar Speed	nce Graph - Typic	al sta	rt				 3D Graph Smooth G Interpolat Smoothing I Graph line w 	iraph e Factor 6 💌 ridth 2 👻	İraw	
Speed % Full Load	100 90 80 70 60 50 40 30 20 10 0	10	Starter / Brake Performar Speed	nce Graph - Typic I-Time	60	rt	70	80	90	 3D Graph Smooth G Interpolat Smoothing I Graph line v 	in Red iraph e sactor 6 in idth 2 in	Iraw	

No more searching for equipment catalogues - it is built into the software.

Equipment Schedules

The delta-T6 program allows you complete your designs and then to rationalise the equipment by standardising where possible. You can then extract a list of equipment from multiple Design Files. These equipment schedules can then be sent to suppliers with requests for prices and also used as the basis of equipment and Spares Lists.

Equipment Schedule types include

- Conveyor Design Sumary
- Belt Schedule
- Idler Schedule
- Pulley Schedule
- Motors Schedule
- Fluid Couplings Schedule
- Gearbox Schedule
- Shaft Couplings Schedule
- Belt Tension Comparison between different load cases of same conveyor
- Design Summary Comparison between different load cases of same conveyor

Preview	franke i fing		-											6		x
<u>File Viev</u>	w <u>B</u> ackground															-
83 🗁	🔒 8' 8 🔖		🖑 🔍	9 75	5% 🗸	€	< ▶	DI B	۵ 🥎		-	- 🛛	-			
	-															^
	23 Dec 2009 12:32				Equipm	ent Sched	ule - Cor	iveyor P	ulleys I	ist				Page	1/2	
	Project De Project No. P0 Conveyor No. CV	sign Revi 963 213	iew CV213			TETA	contorog	Client Prepared Design D	AB By Pe ate 17	BC Iron eter Burro Novemb	w er2009					
													TEC	Helix	ES	=
	Conveyor Number	Pulley	Pulley Dia	Face Width	Shaft Length	Shaft Dia	Bearing Dia	Bearing Centres	Laggin thick	T1 Run	T2 Run	T1 Start	T2 Start	Pulley Inertia	Pulley & Shaft Mass	
	CV213	NO.	mm 914	mm 2000	mm 3240	mm 240	mm 220	mm 2600	mm 12	kN 136.14	kN 137.69	kN 140.61	kN 142.43	kg-m2 331.17	kg 3355	
	CV212	7	1077	2000	2420	220	220	2600	12	424.51	429.09	472.20	479.10	290.21	2777	
	CV213	'	10//	2000	5420	320	320	2000	12	434.01	433.00	475.50	4/0.10	350.21	3111	
	CV213	8	1024	2000	3420	320	320	2600	12	439.38	444.00	479.02	483.91	440.49	4204	
	CV213	9	1077	2000	3360	300	300	2600	12	438.08	143.77	478.18	158.05	383.54	3490	
	CV213	10	914	2000	3240	260	220	2600	12	150.84	152.61	165.33	167.36	334.3	3543	
	CV213	11	914	2000	3240	260	220	2600	12	147.10	148.76	147.10	149.03	334.3	3543	
	CV213	12	914	2000	3200	240	200	2600	12	154.43	156.17	154.82	156.82	331.07	3341	
	CV 101	1		1000	2000	200	180	1570	12	100.00	50.00	.00	.00	50	3000	
	CV 101	6		1000	2000	200	180	1570	12	100.00	50.00	.00	.00	50	3000	
	CV 101	7		1000	2000	200	180	1570	12	100.00	50.00	.00	.00	50	3000	
	CV 101	8		1000	2000	200	180	1570	12	100.00	50.00	.00	.00	50	3000	~
																>
Current Pag	e: 1			To	otal Pages: 2	2				Zoo	om Facto	or: 75%				

Calculation Methods ...

HELIX delta-T Calculation Methods 👞

Helix delta-T6 has three main methods for calculating conveyors:

ISO 5048

Calculation based ISO 5048 methods - similar to DIN 22101

СЕМА

Calculation Conveyor Equipmeent Manufacturers' method

VISCO

Calculation based on conveyor belt rheology - uses the conveyor belt Rubber properties to calculate the friction factor

The ISO 5048 is the International Standard method and is closely related to the German DIN 22101 Standard. The Helix delta-T program follows the requirements of this standard with the addition of an automatic friction factor estimation based on belt sag. This f factor estimation has been successfully used to design and build many thousands of conveyors.

The CEMA (Conveyor Equipment Manufacturers Association) methed uses the methods and formulae detailed in the CEMA manual.

The VISCO method in the delta-T program uses the conveyor belt Rubber properties to calculate the belt - roller indentation and combines this with the material and belt flexure losses and idler drag and scuffing resistance to accurately calculate the friction factor of the conveyor. This method is a very accurate method of calculating conveyors as it takes into account the actual rubber properties of the belt to calculate the friction factor. This method allows the user to design conveyors which utilise the latest technology including the Low Resistance Rubber belts made by leading manuficturers around the world.

Viscoelastic Calculation Method

Indentation resistance is caused by the idler roll pressing into the relatively soft belt cover rubber. It is intuitively apparent that the more the penetration of the idler roll into the belt cover, the more resistance there is likely to be. Many people have researched this subject and names such as Jonkers, Spaans, Hager, Lodewijks and Wheeler come to mind. From this research it is evident that the main factors which affect the indentation resistance are the actual rubber properties of the belt cover, the diameter of the idler rolls and the load on the idler roll, which for a fixed tonnage and belt speed is dependent on the idler spacing.

Jonkers developed the following formula for the Indentation resistance

$$F_{er} = 1.14Tan(delta) \left(\frac{Z}{ED^{2}B_{r}}\right)^{\frac{1}{3}} (q_{r}B_{r})^{\frac{4}{3}}$$

Typical makeup of the friction of a long overland conveyor

With delta-T it is very easy to compare the different methods - simply build your conveyor model and then press the ISO, CEMA and VISCO buttons to compare the results.

Design Reports ...

HELIX delta-T Design Reports 👞

Helix delta-T6 has more than 70 design reports which can be viewed, printed and exported to other applications such as MS Word® Excel® or PDF® file formats plus others. You can also choose reports from a list and compile a single composite report and save it as PDF® file.

You can view a sample report by clicking the following link: Sample Design report - pdf file (/DownloadFiles/Helix_delta-T6_Sample_Report01.pdf)

Conveyor Sections Input Data
Design Summary
Takeup & Drive Traction Report
Belt Details Report
Tension Calculation Reports
Tension Graphs
Starting and Stopping Report
Idler Details Report
Vertical Curves Report
Horizontal Curves Reports
Viscoelastic Friction Factor Report
Belt Flap Report
Drives Report
Motors Report
Fluid Coupling Report
Gearbox Report
Shaft Coupling Report
Brakes Report
Takeup Travel Report
Conveyor Pulleys Report
Conveyor Pulley Dimensions Report
Pulley Design Data Sheet
Conveyor Pulley Shafts Report
Dynamic Analysis Results Form
Equipment Lists
Combined Report (All Reports)

View of some sample reports follow: Design Summary

2/2019			Helix Website - DesignReports				
24 Mar 2010 12:34		Conv	Conveyor Design Summary				
		He	lix Techn	ologies Pty Ltd	-		
Project	Demo Conveyo	or High Lift		Client	ABC Iron		
Project No.	P9823			Prepared By	Peter Burrow		
Conveyor No.	C223			Design Date	14 January 201	0	
	<u>3</u> 4		6	-223 6 1 1	3		X Siles کلار
		+	Convey	ed Material			
Material Descri	ption Iron	ore, Lump Product	& Fines	Surcharge Ang	le	15	deg
Low Bulk Dens	ity	1860	kg/m3	Angle of Repos	se	34	deg
High Bulk Dens	sity	2400	kg/m3	Material Lump	size	31.5	mm
			Conve	eyor Data			
Conveying Dis	tance	287.57	m	Design Capaci	ty	9400	tonnes/h
Nett Lift / Low	er (-)	33.44	m	Belt Speed		4.3	m/s
			Belt	Details			
Belt Width Sele	cted	1800	mm	Calculated Belt	% Full	90.5	%
Belt Class & Ru	In Safety Factor	ST-1800	7.58	Top Cover Thic	kness	22	mm
Belt Rated Ten	sion	253	kN/m	Bottom Cover	Thickness	7	mm
Belt Total Leng	th	630.7	m	Belt Mass		81.70	kg/m
		Belt Tensio	ns and Po	ower Calculation	s ISO		
Effective Tens.	Fully Loaded	296.86	kN	Belt Power - Er	npty Belt	106.51	kW
Maximum Tens	ion Tmax	427.57	kN	Belt Power - Inc	lines Loaded	1251.3	kW
Minimum Tensi	on Tmin	119.30	kN	Belt Power - De	clines Loaded	227.31	kW
Sag Tension	1.1 %	76.78	kN	Belt Power - Fu	lly Loaded	1276.51	kW
Takeup Type	Vert	ical Gravity		Drive Efficiency	/	95.0	%
Takeup Mass		26700	kg	Absorbed Pow	er Fully Loaded	1315.94	kW
Takeup Pulley	Belt Tension	130.92	kN	Installed Motor	Power	1260	kW
		C	arry and	Return Idlers			
Carry Idler Trou	igh Angle	35	0	Return Idler Tro	ugh Angle	0	0
Carry Idler Spa	cing	1	m	Return Idler Sp	acing	3	m
Carry Idler No F	Rolls x Dia	3 x 152	mm	Return Idler No	Rolls x Dia	1 x 152	mm
		Dynam	ics and M	liscellaneous Da	ta		
Startup Factor	- Fully Loaded	122	%	CEMA Temper	ature Factor Kt	1.00	
Startup Factor	- Empty	122	%	Total Braking T	orque LSS	26.50	kNm
Starting Time -	Fully Loaded	25.80	sec	Stop Time - Loa	aded, Braking	4.26	sec
Starting Time -	Empty	2.33	sec	Stop Time - Loa	aded, Coasting	5.01	sec

Belt Details

24 Mar 2010 14:11 Belt Details Report						Pag	e 1/1
Helix Technologies Pty Ltd							
Project	Demo Convey	or High Lift		Client	ABC Iron		
Project No.	P9823			Prepared By	Peter Burrow		
Conveyor No.	C223			Design Date	14 January 201	10	
					•	🗢 Heli	x
						TECHNOLOG	IES
		>					
Low Br	$-1960 ka/m^{2}$		High	BD = 2400kg/m	2		
Convoyed Mat	orial		nıgı	BD = 2400kg/m	Canacity		
Material Descri	enan ntion <i>k</i> ro	n oro Lumn	Einoc	Belt Speed &	capacity	12	m/c
Material Descri	puon " O	Product	& FILLES	Dell Speed		4.5	111/5
Low Bulk Densi	itv	1860	ka/m3	Belt Design Ca	pacity Input	9400	tonnes/hr
High Bulk Dens	itv	2400	ka/m3	Section Loadin	g Max Capacity	9400	tonnes/hr
Surcharge And	le	15	dea	Carry Idler Trou	Jah Anale	35	0
Angle of Repos	e	34	dea	Belt Dimensio	ons		
Material Lump	size	31.5	mm	Top Cover Thic	kness	22	mm
Belt Make & C	lass	0.110		Bottom Cover 1	Thickness	7	mm
Belt Category	455	Bando Ste	el	Belt Carcass Th	nickness	4.4	mm
Belt Description	BA	NDO STEEL	CORD	Belt Total Thick	ness	33.4	mm
Belt Class / Plie	is Dr	ST-1800	00110	Belt Total Belt I	enath (L)	630.7	m
Belt Reinforcen	nent Fibre	Steel		Time for 1 Rev	olution	146.7	sec
Belt Width Sele	cted	1800	mm	Belt Load Are	a and Canacity a	t 1860kg/m3	
Belt Modulus	0.00	129600	kN/m	Minimum Rec	Edge Distance	122	mm
Cord Diameter		4.4	mm	Actual Edge Di	stance Low BD	150	mm
Cord Pitch		10.0	mm	Load Burden D	enth	305	mm
Number of Con	ds	0		Load Burden W	/idth	1208	mm
Belt Tensions				Belt Load Area	at Minimum	1200	
Belt Rated Tens	ion / m width	253	kN/m	Recommended	d Edge Distance	0.3608	m2
Calculated Ten	sion / m width	237.5	kN/m	Belt Load Area	Utilised at Low		
Belt Rated Tens	ion for width	455.4	kN	Bulk Density	ounood at 2011	0.3265	m2
Calculated Max	Run Tension	427.57	kN	Belt Actual % F	ull at Low BD	90.5	%
Minimum Tensi	on Tmin	119.30	kN	Belt Load Are	a and Capacity a	t 2400kg/m3	
Allowable Tens	ion Rise. Starting	150	%	Minimum Rec.	Edge Distance	122	mm
Allowable Belt	Tension, Starting	683.1	kN	Actual Edge Di	stance High BD	230	mm
Actual Belt Ten	sion. Starting	467.85	kN	Belt Load Area	Utilised at High		
				Bulk Density		0.253	m2
Belt and Mater	ial Mass			Belt Actual % F	ull at High BD	70.1	%
Belt Top Cover I	Mass	44.7	kg/m	Flooded Belt	Capacity at 2400	ka/m3	
Belt Bottom Cov	er Mass	14.2	ka/m	Flooded Belt Lo	oad Area at Zero		
Belt Carcass Ma	ass	21.1	kg/m	Edge Distance		0.4846	m2
Belt Mass Wb (per linear m) 81.7 kg/m		Flooded Belt C	apacity	18003	tonnes/hr		
Material Mass V	Vm	607.2	kg/m	Flooded Belt M	aterial Mass	1163	kg/m
Total Mass (Wb	+ Wm)	688.9	kg/m				
Total Belt Mass	(Wb x L)	51528	kg				
Designers Commer	nts		-				

Drive Details

Idler Details

Belt Tension Graphs

Belt Tension Summary Report

Belt Sag Summary Report

Pulley Details Report

You can view a sample report by clicking the following link: Sample Design report - pdf file (/DownloadFiles/Helix_delta-T6_Sample_Report01.pdf)

Dynamic Analysis ...

HELIX delta-T6 Dynamic Analysis 🕳

A version of the program which has full flexible belt Dynamic Analysis capabilities has been available in Helix delta-T since 2003. This version calculates the transient belt Tensions and Velocities during starting and stopping of a conveyor. It can model the conveyor belt transient behaviour during Starting Fully Loaded, Starting Empty, Stopping Fully Loaded and Stopping Empty.

This new version of the program which has full Dynamic Analysis capabilities is essential for designing high powered conveyors and long overland conveyors. The Dynamic analysis version includes the Standard and Professional versions of the software. If the installed power on a conveyor is more about 800kW then Dynamic Analysis of the conveyor starting and especially stopping is recommended.

The program allows the user to input any number of Drives or Brakes and allows for input of Drive Torque / Speed curves, Delay times, Braking Torques, Flywheels and inertia effects. After the Dynamic Calculations have been performed, the user can view and Print two dimensional and surface plot three dimensional graphs for Belt Tensions, Belt Velocities, Strain rates and Takeup movement versus time step for all points along the conveyor.

Video of Conveyor Belt Contracting and Running Backwards at Tail

Video of Conveyor Stopping Fully loaded - note reverse running after belt reaches zero velocity

Helix Belt Velocity of Conveyor Belt Contracting and Running Backwards at Tail

The graph above shows the results of the stopping full dynamic analysis calculation; this is a graph of the Belt Velocities and you can see the program shows the Tail pulley (black line) running on at belt speed for 2 seconds, then decelerating and after the initial stop it has a negative velocity from 4.0 seconds to 6.5 seconds - this is the belt running backwards.

It has a final forward velocity for a short time shown in the graph and also in the video. This conveyor is almost flat so the run-back is not due to gravity but due to the very flexible Fabric reinforced belt contracting and so running backwards at the Tail Pulley.

Helix Dynamic Analysis Calculation Method

The Dynamic calculation process uses sophisticated Variable Step Runge Kutta method integrators for solving the complex differential equations. All the numerical analysis is compiled into the program and it does not require any other software to perform the calculations or display graphs etc. It also allows flexible, easy to use boundary condition specification by the user.

Helix delta-T uses a Finite Element model of the conveyor to perform the dynamic analysis. The conveyor is broken up into segments, and for each segment, we use a Kelvin solid model, which is a spring in parallel with a viscoelastic element, as shown below:

Kelvin Solid Model

Conveyor Model Diagram

The conveyor model created and captured in the normal delta-T program is automatically broken up into segments in the Dynamic Calculation process. The program already knows the geometry of each section of conveyor, as well as the idler spacing, rotating masses, resistances, inertias, drive power and location, takeup mass and the equivalent mass of each element in the conveyor. The Dynamic calculation breaks the standard conveyor sections into smaller segments. The designer can specify the maximum segment length to be used.

 $\dot{m_i} V = T_{i+1}(t) - T_i(t) - m_i g \sin \theta - W_i(t) + F_m$

Delta-T uses the Finite Element method of dynamic analysis Once the conveyor is segmented, the moving mass, length etc. of each segment is known. The Tension force acting on segment i at time t is given by the sum of the spring and viscoelastic Tension forces, Ts and Tv respectively. At each time step of say 0.1 seconds, the rate of change of velocity, combined with the strain on each conveyor segment is calculated. The peripheral force at the drive pulleys is the motivating force. The main conveyor resistances, represented by the Coulomb friction factor f, which is a function of instantaneous belt tension and belt sag at the segment under consideration, are taken into account. All idler roller rotating masses and pulley, drive and brake inertias are included in the acceleration and tension calculations. The Drive Torque or Velocity is input graphically, and the resulting Belt Tensions, strains and belt Velocities are output for each time step and for each point along the conveyor. These values are presented graphically for ease of interpretation.

Dynamic Analysis Graphs

Dynamic Analysis Graphs						
Graph Description	2D Graph	3D Graph	Remarks			
Belt Velocity at each pulley / point in conveyor			User can plot all points or any point			
Belt Tensions at each pulley / point in conveyor			п			
Take-up Travel at each pulley / point in conveyor			Only Take-up plotted			
Pulley Torque at each pulley / point in conveyor			Drive and Brake Pulleys			

Dynamic Analysis Features

The Dynamic Calculations are easy use to use and Engineers who have static conveyor design experience can perform these complex dynamic simulations using this very powerful software.

- Easily model the belt transient tensions and velocities during Starting and Stopping of conveyors.
- Add Torque Control or Speed Control on drive acceleration.
- Add Delay times for multiple drives for Dynamic Tuning.
- Add Flywheels to pulleys to optimise starting and stopping.
- Add Brakes to pulleys as required.
- Calculate Dynamic Runback forces and size holdbacks for dynamic loads.
- View the movement of the Takeup pulley during Starting and Stopping.
- Predict the maximum Transient Belt Tensions at any point along the conveyor as well as the timing of these transients.
- Compare the Dynamic Calculations results with the rigid body static calculations in the delta-T5.
- Predict the magnitude of transient loads on conveyor structures.
- Calculate the torque loadings on gearboxes, holbacks and couplings during starting and stopping. Eliminate conditions which may cause costly equipment failures.
- Perform Dynamic Tuning by changing the start delay times on different drives.
- Helix delta-T allows the designer to control the starting of a conveyor by means of:
- Starting Stopping Control
 - Torque Speed Control Starting e.g DOL, Wound Rotor, Fluid Coupling etc.
 - Speed Time Control Starting e.g VVVF Variable Speed Drives, DC Motors
 - Constant Torque Brake Stopping e.g Disc Brake
 - Speed Time Curve Control Stopping e.g VVVF Controlled stop (ramp down)
- The Take-up can be locked on stopping to use belt stretch tension for sag control

Sample of Belt Velocity Graph for conveyor starting

Sample Belt Tension Graphs for conveyor starting full

Takeup Travel Graph

Example of Dynamic Analysis - conveyor stopping loaded Belt Velocities

Belt Tensions

Note Tension rise as conveyor comes to rest and holdback locks up at 11.5 second mark.

Sample of VVVF Variable Speed Drive Starting Ramp using built in spline curve generator

You can download a Sample of a Conveyor Dynamic Analysis report for a 6.7kM long overland conveyor Sample Dynamic Analysis report - zip file.

(/DownloadFiles/Helix_Sample_CV202_Conveyor_Design_Report_Dynamic_Analysis.zip) Save the file to disk and then unzip it and view the Word doc with reports and graphs generated from Helix delta-T

Conveyor Starters ...

HELIX delta-T6 Dynamic Analysis - starting conveyors

Helix delta-T version 6 has a powerful capability to allow the design Engineer to control and optimise the conveyor starting and stopping.

Conveyor Starting and Stopping Methods

Helix delta-T allows the designer to control the starting of a conveyor by means of:

- Torque Speed Control Starting.
- Speed Time Control Starting.
- Constant Torque Brake Stopping braking.
- No Brake Stopping coasting.
- Speed Time Curve Control Stopping ramp-down.
- Add Delay times between drives starting.
- Add Delay times between brakes activating.
- The Take-up can be locked on stopping to use belt stretch tension for sag control

All of the above controls can be programmed in by entering data in the Starters Database and then using these curves to control the conveyor during the dynamic analysis.

Torque Speed Control

Torque control means that the Torque, expressed as a % of Full Load Torque is the controlled parameter at the Drive. This means that the Driving Peripheral force on the drive pulley is controlled and the magnitude of the force depends on the actual pulley speed at each time step expressed as a % of Full Load Speed.

Typical Starting Torque Curve for an Induction motor

The delta-T program allows you to model each Drive's Starting Torque vs Speed characteristics. The method used is a tabular description of the % of Full Load Torque vs the % of Full load speed. All you need to do is enter the Torque % at the relevant % Speed values and the program will draw the curves for you and then use regression methods to get the actual values of Torque to apply during the dynamic analysis calculation process.

Speed Control and Regenerative Drives

The Full Load Speed and Torque and is reached when 100% Speed is reached. Note that if the conveyor tries to run at speeds above the Full load speed of the motor, the available torque from the drive drops off rapidly, and the Conveyor load will then tend to bring to reduce the speed. Above the asynchronous speed the torque is reversed ie it becomes negative and the motor acts as brake.

This overspeed braking effect is very important in Conveyor operation and Dynamic Analysis, as it helps to control the drive speed and keep it from overspeeding. For regenerative conveyors, the motor operates in the band above the 100% FL speed range and thus acts as a brake.

Load Torque vs Drive Torque

During the Dynamic Analysis calculations, the Torque supplied by the drive is applied to the drive pulley. When the Drive starts, the Starting Torque is applied and as the drive pulley accelerates, the Torque % along the curve is progressively applied until the pulley reaches 100% of Full Load speed. If the drive pulley is pushed over the full load speed by a Tension wave, the Torque reduces

to below the Load Torque and the drive slows down. Eventually equilibrium is reached where the Drive Torque equals the Load Torque.

Load Sharing between Drives

If two or more induction motors are installed on a conveyor drive (or multiple drive pulleys) the motors will almost certainly have slightly different torque speed characteristics. If we examine two motors' torque speed curves close to the full load speed we may have something like the curve shown below:

The above equilibrium explains why Squirrel Cage electric motors automatically load share. If one Drive takes less than its fair share of load, the other drives takes more share. This causes the second drive to slow down, and as it slows down, the first drive will automatically take more load.

Wound Rotor or Slip Ring Motor

Slip ring motors or wound rotor motors are a variation on the standard cage induction motors. The slip ring motor has a set of windings on the rotor which are not short circuited, but are terminated to a set of slip rings for connection to external resistors and contactors. The slip ring motor enables the starting characteristics of the motor to be totally controlled and modified to suit the load. As the motor accelerates, the value of the rotor resistance can be reduced altering the start torque curve in a manner such that the maximum torque is gradually moved towards synchronous speed. This results in a step controlled starting torque from zero speed to full speed at a relatively low starting current. The sliprings and brush assemblies need regular maintenance which is a cost not applicable to the standard cage motor.

Typical Torque Speed Curve for a Slip Ring Wound Rotor Motor

Helix Website - DynamicStarting

The above graph shows the motor performance when the rotor resistance is varied. The resistors can be switched on fixed time steps or on reaching a % speed setting. The Starting torque at the motor output shaft is controlled along the 'Saw Tooth' shape shown by the thick black line. Torque is drawn as a PU (Per Unit) basis above graph and is shown and input as % of full load torque in Helix delta-T.

Wound Rotor Motor Speed Torque Curve Input into Delta-T

Note the speed curve is input for speeds above 100% to simulate the negative torque the motor will develop if pushed above 100% speed. Delta-T applies the calculated torque at each time step to the Drive pulley according to the relationship shown in the Torque speed Curve. This means that the program can model any Torque Speed relationship you wish.

WR Switched Resistances for an Empty Conveyor

For an empty conveyor the torque speed may look something like the one below. Because the load is say only 25% to 30% of the motor FLT the conveyor will accelerate to a large degree on the first or second resistance step with the remaining acceleration occurring at closely spaced intervals until the normal run resistance is finally connected. We still need to show the negative torque curve beyond the 100% speed mark as this controls the conveyor belt speed, both in practice on actual conveyors and in the Helix Dynamic analysis calculations.

Fluid Coupling Torque Control

A Fluid Coupling is a device consisting of an impeller and a runner where the impeller is driven by the motor and torque is transmitted to the runner by fluid between the impeller and runner. This allows the motor to start freely and as fluid is drawn into the impeller / runner interface, the torque on the output shaft of the fluid coupling increase gradually until it is sufficient to move the conveyor and accelerate it. To use a Fluid Coupling Start in Helix delta-T, merely enter the output shaft Torque Speed curve for the fluid coupling as a dataset in the Torque Speed curve table. The program will then use whatever shape of curve you specify.

Cross sectional drawing of a soft start fluid coupling and some typical Torque speed curves -Drawing and Graphs Courtesy of Voith Transmissions.

08/02/2019

Fluid Coupling curve entered into Helix delta-T

Speed Time Control

The second method of starting control is known as Speed Control or a Velocity Ramp control. This method of control does not specify the amount of Torque applied to the Drive pulley. It specifies a pulley Speed at each time step during acceleration and sufficient Torque is applied in order to maintain the specified speed. This method of starting is usually provided by electronic solid state Variable Speed Drives which control the motor speed accurately to with fractions of a percent of Full Load Speed.

A typical linear Velocity Ramp

In the above starting speed ramp the speed increases linearly with time with a dwell time of 5 seconds when speed reaches 5% of speed. In this case the starter type is selected as Speed Time and the % Speed and Time in seconds are input into the starter database.

S curve Acceleration Ramps

Messers A. Harrison and L. Nordell have proposed various 'S' curve acceleration ramps. Both of these starting methods can be simulated in delta-T. Refer to the papers on these subjects in the References section for more details.

Cycloidal Front S curve - Harrison Model

This form of S curve was first proposed by Dr Alex Harrison and it is called a cycloidal front characteristic.

The cycloidal front curve is derived from: $v(t) = \frac{V}{2} \left(1 - \cos \frac{\pi}{T} t\right), 0 \le t \le T$

S curve - Nordell Model

This form of S curve was first proposed by Nordell. It takes the form:

This S curve is obtained as follows:

$$v(t) = V\left(\frac{2t^2}{T^2}\right), 0 \le t \le \frac{T}{2}$$

$$v(t) = V\left(-1 + 4\frac{t}{T} - 2\frac{t^2}{T^2}\right), \frac{T}{2} \le t \le T$$

Nordell's model has a higher acceleration (in the middle portion) than Harrison's but a lower Jerk (first derivative of acceleration)

In delta-T, you are free to use any Velocity ramp you wish - merely type in the speed time values and the program will do the rest. You can also derive your own relationships using a spreadsheet program such as Excel and then paste the values into delta-T.

Hermite Cubic Spline Curve Starter

This shape of starting ramp allows a very soft start of the conveyor especially if a long time is used and it is also useful for conveyors with head and tail or tripper drives which are far apart. It allows a delay time to be built into the curve so that acceleration of the tail drives can be matched to the head drives. It also allows a dwell period to be added which allows the drive to start and ramp up to say 5% speed and it then holds the speed at this level for the dwell time before accelerating along the spline curve

The curve below has 20 second delay time, it then ramps up to 5% speed, holds it at this speed for a 20 second dwell time and then accelerates along a cubic spline S curve, reaching full speed after 245 seconds. Refer to Hermite Cubic Spline (http://en.wikipedia.org/wiki/Cubic_Hermite_spline) link for more details.

Aborted Start Torque Speed Curve

You can model an aborted start by truncating the Drive Torque vs Speed curve. For example, if the start is aborted at 85% of Full load Speed the following (simplified) Torque speed curve could be used to model the conveyor.

Braking

The Helix delta-T program allows you to program a Speed Time graph to apply to a braking stop. The principle is the same as the Speed time starting method except that it is applied when the conveyor is stopping. The full speed of the conveyor is taken as 100% speed and the brake pulley will follow the Speed Time you curve you input down to zero % speed. A sample is shown below.

VVVF and Variable Speed Starters

Helix Website - DynamicStarting

Variable Voltage Variable Frequency starters (VVVF) are basically electronic controllers which can control induction motor speed and torque by varying the electrical supply to the motor. They are also called Variable Speed Drives or VSD's. These starter can be programmed so that they will start a conveyor motor and force it follow a Speed Time curve such as the ones detailed above. They have speed loop feedback from the motor and control the motor speed to follow the programmed ramp by varying the torque the motor is developing. If the motor speed is falling behind the curve the torque is increased, if it is getting ahead of the curve the torque is decreased. This forces the motor to follow the programmed Speed Time curve. It is interesting to note the even though we program it to Speed Time parameters, it is still actually a torque control start.

These VVVF Drives can also be used to control the stopping of a conveyor by ramping down the torque in a controlled manner to follow a Speed Time curve such as the one shown under the Braking heading above. To to program this type of stopping use a Brake or Drive pulley with an S curve as shown above.

You can apply different Starting and Stopping characteristics to each individual Drive or Brake pulley (with delay times if required)

Horizontal Curves ...

HELIX delta-T6 Horizontal Curves 👞

Video of Horizontally Curved Conveyor Belt Running Empty and then Full

Video of Horizontally Curved Conveyor Belt Running Empty and then Full - note reverse that when Empty the belt drift is towards the inside (high) of the curve but when the weight of the material is added the belt drift is to the outside (low) side of the curve. Helix allows you to calculate the belt drift under different loading and running or starting / stopping conditions. This conveyor was designed using the Helix delta-T program.

Helix delta-T version 6 has a powerful capability to design conveyors which are curved in the horizontal and vertical plane.

A picture of a horizontally curve conveyor is shown below - note the idlers are tilted up on the inside of the curve in order to prevent the belt from straightening and falling off the conveyor.

Horizontal Curve Calculation theory

The belt tension T in a curved belt has a resultant force Ft towards the centre of the curve. The

resultant force Ft is given by: $Ft = \frac{T \times I_s}{R}$ where Ft is motivating force towards centre of curve,

T is belt tension, Is is idler spacing and R is horizontal curve radius.

This motivating force needs to be balanced by tilting up the idler on the inside of the curve. The weight of the belt and material (if loaded) creates a balancing force to oppose the motivating force. The trick is to know how much to tilt the idler and ensure that the conveyor can operate

Negative Belt Drift - If you tilt the idlers up too much the belt will drift away from the centre of the curve and this is called a negative belt drift.

Positive Belt Drift - If the idler is not tilted up enough the forces will not be in balance and the belt will tend to drift towards the centre of the curve.

The objective is to select a banking angle which will result in negative belt drift under some operating conditions and positive belt drift under others and ensure that the belt and material will stay on the conveyor. If the banking angle required or belt drift is excessive you need to increase the curve radius or decrease the belt tension. Normally Helix Technologies aims to limit the banking angle to a maximum of about 8 degrees on the loaded side of the belt.

Horizontal Curve Calculations

To calculate the banking angles required and resulting belt drift in Horizontal curves requires you to first input the conveyor geometry including entering the X, Y, Z co-ordinates for the points along the conveyor. See the Entering X,Y.Z co-ordinates help topic. Once you have the conveyor geometry you can go to the Input, Input Horizontal Curves menu on the main form. This will display the following form:

Help				5	- Horizonia	al Curve C	alculation	ns			
	Exit										
irve La	wout Co-a	ordinates	Hori	zontal Curve De	tails						
X	Y										
										æ	
1											
										Jan Carlos Carlo	
										r i i i i i i i i i i i i i i i i i i i	
							_				
		m	~								
			-		_						
urve C	Co-ordinat	es									
urve C	Co-ordinat	es	_								_
urve C	Co-ordinat	es PType		Description	х	Y	Z	Horiz Curve Radius	HCurveIncr	HCurveAngle	
urve C	Co-ordinat No	es PType Int. Pt	•	Description I.P. Point	X 273.8	Y 0	Z 0	Horiz Curve Radius 0	HCurveIncr 1	HCurveAngle 0	
urve C	Co-ordinat No 1 2	es PType Int. Pt Tail	•	Description I.P. Point Tail	X 273.8 0	Y 0 0	Z 0 0	Horiz Curve Radius 0 0	HCurveIncr 1 1	HCurveAngle 0 0	
urve C	Co-ordinat No 1 2 3	es PType Int. Pt Tail Hopper	• •	Description I.P. Point Tail Hopper	X 273.8 0 11.2	Y 0 0 0	Z 0 0 0	Horiz Curve Radius 0 0 0	HCurveIncr 1 1 1	HCurveAngle 0 0 0.209272512554	
urve C	No 1 2 3 4	es PType Int. Pt Tail Hopper Int. Pt	• • •	Description I.P. Point Tail Hopper Int 1	X 273.8 0 11.2 20.8	Y 0 0 0 0	Z 0 0 0 0	Horiz Curve Radius 0 0 0 0 0	HCurveIncr 1 1 1 1 1	HCurveAngle 0 0 0.209272512554 0	
urve C	No 1 2 3 4 5	es PType Int. Pt Tail Hopper Int. Pt Int. Pt	* * *	Description I.P. Point Tail Hopper Int1 SOC	X 273.8 0 11.2 20.8 401.5	Y 0 0 0 0 0 0	Z 0 0 0 0 0	Horiz Curve Radius 0 0 0 0 0 2500	HCurveIncr 1 1 1 1 1 1 1	HCurveAngle 0 0 0.209272512554 0 0.01383	
urve C	No 1 2 3 4 5 6	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt	 <	Description I.P. Point Tail Hopper Int1 SOC Int3	X 273.8 0 11.2 20.8 401.5 473.8	Y 0 0 0 0 0 0 1	Z 0 0 0 0 0 0 0 0	Horiz Curve Radius 0 0 0 0 0 2500 2500	HCurveIncr 1 1 1 1 1 1 1 1 1 1 1	HCurveAngle 0 0 0 0 0 0.209272512554 0 0 0.01383 0.10655	
urve C	No 1 2 3 4 5 6 7	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt Int. Pt	 * * * * * * * * * 	Description I.P. Point Tail Hopper Int1 SOC Int3 IP	X 273.8 0 11.2 20.8 401.5 473.8 793.2	Y 0 0 0 0 0 0 1 30.7	Z 0 0 0 0 0 0 0 0 0	Horiz Curve Radius 0 0 0 0 0 2500 2500 2500 2500	HCurveIncr 1 1 1 1 1 1 1 1 1 1 1 1 1	HCurveAngle 0 0 0 0.209272512554 0 0.01383 0.10655 0.26827	
urve C	Co-ordinat No 2 3 4 5 6 7 8	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt	* * * * *	Description I.P. Point Tail Hopper Int1 SOC Int3 IP Int4	X 273.8 0 11.2 20.8 401.5 473.8 793.2 871	Y 0 0 0 0 0 1 30.7 44.5	Z 0 0 0 0 0 0 0 0 0 1.46	Horiz Curve Radius 0 0 0 0 0 2500 2500 2500 2500 2500 250	HCurveIncr	HCurveAngle 0 0 0 0.209272512554 0 0.01383 0.10655 0.26827 0.40464	
urve C	No 1 2 3 4 5 6 7 8 9	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt	 <	Description I.P. Point Tail Hopper Int1 SOC Int3 IP Int4 Int5	X 273.8 0 11.2 20.8 401.5 473.8 793.2 871 1065.7	Y 0 0 0 0 0 1 30.7 44.5 89.9	Z 0 0 0 0 0 0 0 0 1.46 4.16	Horiz Curve Radius 0 0 0 0 0 2500 2500 2500 2500 2500 250	HCurveIncr	HCurveAngle 0 0 0 0.209272512554 0 0 0.01383 0.10655 0.26827 0.40464 0.5578	
	Co-ordinat No 1 2 3 4 5 6 7 8 9 10	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt	 <	Description I.P. Point Tail Hopper Int1 SOC Int3 IP Int4 Int5 IP	X 273.8 0 11.2 20.8 401.5 473.8 793.2 871 1065.7 1349.5	Y 0 0 0 0 1 30.7 44.5 89.9 186.7	Z 0 0 0 0 0 0 0 0 0 1.46 4.16 8.66	Horiz Curve Radius 0 0 0 0 2500 2500 2500 2500 2500 2500	HCurveIncr	HCurveAngle 0 0 0 0 0.209272512554 0 0 0.01383 0.10655 0.26827 0.40464 0.5578 0.7382	
urve C	No 1 2 3 4 5 6 7 8 9 10 11	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt	 * *<	Description I.P. Point Tail Hopper Int1 SOC Int3 IP Int4 Int5 IP Int6	X 273.8 0 11.2 20.8 401.5 473.8 793.2 871 1065.7 1349.5 1441.2	Y 0 0 0 0 1 30.7 44.5 89.9 186.7 226.5	Z 0 0 0 0 0 0 0 0 0 1.46 4.16 8.66 9.16	Horiz Curve Radius 0 0 0 0 2500 2500 2500 2500 2500 2500	HCurveIncr	HCurveAngle 0 0 0 0 0.209272512554 0 0 0.01383 0.10655 0.26827 0.40464 0.5578 0.7382 0.87806	
	No 1 2 3 4 5 6 7 8 9 10 11 12	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt		Description I.P. Point Tail Hopper Int1 SOC Int3 IP Int4 Int5 IP Int5 IP Int6 Int7	X 273.8 0 11.2 20.8 401.5 473.8 793.2 871 1065.7 1349.5 1441.2 1619.6	Y 0 0 0 0 1 30.7 44.5 89.9 186.7 226.5 316.8	Z 0 0 0 0 0 0 0 0 0 1.46 4.16 8.66 9.16 10.16	Horiz Curve Radius 0 0 0 0 0 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500	HCurveIncr	HCurveAngle 0 0 0 0.209272512554 0 0 0.01383 0.10655 0.26827 0.40464 0.5578 0.7382 0.87806 1.01731	
urve C	Co-ordinat No 2 3 4 5 6 7 8 9 10 11 11 12 13	es PType Int. Pt Tail Hopper Int. Pt Int. Pt		Description I.P. Point Tail Hopper Int1 SOC Int3 IP Int4 Int5 IP Int6 Int7 Int8	X 273.8 0 11.2 20.8 401.5 473.8 793.2 871 1065.7 1349.5 1441.2 1619.6 1790.2	Y 0 0 0 0 1 30.7 44.5 89.9 186.7 226.5 316.8 421.1	Z 0 0 0 0 0 0 0 0 0 0 0 1.46 4.16 8.66 9.16 10.16 11.46	Horiz Curve Radius 0 0 0 0 0 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500	HCurveIncr	HCurveAngle 0 0 0 0.209272512554 0 0.01383 0.10655 0.26827 0.40464 0.5578 0.7382 0.87806 1.01731 1.17823	
	Co-ordinat No 2 3 4 5 6 7 8 9 10 11 12 13	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt		Description I.P. Point Tail Hopper Int1 SOC Int3 IP Int4 Int5 IP Int6 Int7 Int8	X 273.8 0 11.2 20.8 401.5 473.8 793.2 871 1065.7 1349.5 1441.2 1619.6 1790.2	Y 0 0 0 0 1 30.7 44.5 89.9 186.7 226.5 316.8 421.1	Z 0 0 0 0 0 0 0 0 1.46 4.16 8.66 9.16 10.16 11.46	Horiz Curve Radius 0 0 0 0 0 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500	HCurveIncr	HCurveAngle 0 0 0 0.209272512554 0 0 0.01383 0.10655 0.26827 0.40464 0.5578 0.7382 0.87806 1.01731 1.17823	
Curve C	Co-ordinat No 1 2 3 4 5 6 7 8 9 10 11 11 12 13	es PType Int. Pt Tail Hopper Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt Int. Pt		Description I.P. Point Tail Hopper Int1 SOC Int3 IP Int4 Int5 IP Int6 Int7 Int8 III	X 273.8 0 11.2 20.8 401.5 473.8 793.2 871 1065.7 1349.5 1441.2 1619.6 1790.2	Y 0 0 0 0 1 30.7 44.5 89.9 186.7 226.5 316.8 421.1	Z 0 0 0 0 0 0 0 0 0 0 1.46 4.16 8.66 9.16 10.16 11.46	Horiz Curve Radius 0 0 0 0 0 0 0 0 0 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500	HCurveIncr	HCurveAngle 0 0 0 0.209272512554 0 0 0.01383 0.10655 0.26827 0.40464 0.5578 0.7382 0.87806 1.01731 1.17823	

As can be seen from the above image the first sections of the conveyor are straight and the Y coordinates entered are all 0. Then from point 6 onwards the Y co-ordinates are increasing as the offset increases. The drawing is actually for a single horizontal curve but in order to improve accuracy of the geometry multiple points have been added along the curve path.

The radius of the curve is entered in the Horiz Curve Radius column, in this case it is a constant radius and it is drawn by the software as a red line. It is often best to draw the conveyor in a CAD drawing program and obtain the X,Y,Z points from the CAD drawing.

To calculate the banking angles required and resulting belt drift in Horizontal curves requires you to first input the conveyor geometry including entering the X, Y, Z co-ordinates for the points along the conveyor. See the Entering X,Y.Z co-ordinates help topic. Once you have the conveyor

geometry you can go to the Input, Input Horizontal Curves menu on the main form. This will display the following form:

The Horizontal Curves Datacontrol above the graph allows you to scroll through all the intersection points in the conveyor that are horizontal curves. as you scroll through the curves, the details of the curve are displayed in the Horizontal Curve Inputs tabsheet on the right hand side of the form. The inputs in these tables are extracted from other input data in the program but the following inputs relate specifically to the Horizontal curves:

Horizontal Curve Radius - this is a very important input, the larger the radius the less the resultant force towards the centre of the curve. Always use the maximum radius that can be incorporated in the conveyor.

Material Mass per m - this is a calculated value from the capacity on the conveyor section.

Idler Spacing - this input affects the motivating force, see formula at top of form.

Banking Angle - this is the angle at which the idler set is tilted up on the inside of the curve. If you alter this value and press Enter, the program will re-calculate the Belt Drift for all the operating conditions of the conveyor and draw them in the main Graph on the form.

Belt Drift Graph - this graph shows the amount the belt will drift for the particular load and operating case. For instance the Starting Empty belt drift is usually the highest positive belt drift and is shown by the intersection of the green graph with the "Starting Empty" vertical line. The Braking Full (or Coasting Full if no brakes are fitted) graph will usually be the highest negative belt drift calculated.

The Idler Face Widths also affect the calculations considerably, sometimes it is necessary to use an idler roll with a longer face width than you normally would for the belt selected. Getting more belt and material load on the centre roller increase the balancing forces. Three roll idlers are better than 2 roll idlers (even on the return belt run) because 2/3 of the belt and material are balancing versus half for a two roll system.

Idler to Belt Friction - some designers allow for a friction force between the belt and idler to counter the tendency of the belt to drift up the idlers. The inputs for the us1, usm and us2 are Coulomb friction factors. Helix recommends that these are set to zero because if the belt is wet the force will be considerably reduced.

The Conveyor Tensions tab shows the belt tensions at the curve under the various operating conditions.

Horizontal Curve Inputs Conveyor Tensior	Belt Cross Section	n	
No	5.00	6.00	
РТуре	Int. Pt	Int. Pt	Int. Pt
Location Co-ordinates			
Desc	SOC	Int3	IP
X	401.50	473.80	79
Y	0.00	1.00	3
Z	0.00	0.00	
Calculated Belt Tensions			
Run Full Tension	124.46	128.68	14
Run Empty Tension	97.96	98.60	10
T1Stopped	57.96	57.96	5
Start Full Tension	138.59	143.66	16
Start Empty Tension	138.03	139.33	14
Braking Full Tension	110.44	111.28	11
Braking Empty Tension	113.50	113.70	11
Coasting Full Tension	75.39	76.65	8
Coasting Empty Tension	00.02	81.18	8
Horizontal Curve Tension Rise (Calco	42.29	42.29	4
Capacity tph	4,431.00	4,431.00	4,43
Idler Spacing	2.25	2.25	
Material mass per m	219.79	219.79	21

Belt Tension Rise due to elongation of outside edge of belt in the horizontal curve Add this tension to the maximum tension in the belt and ensure it is within limits

The Belt Cross Section Drawing tab shows a drawing of the carry idler tilted at the banking angle you input for the curve.

Copy dataYou can copy the Belt Drift Graphs into the Windows clipboard using the Copy button above the graph and then paste these graphs into a Word document as part of a report, or you can view and print the report using the button provided at the top of the form.

In the graph above the banking angle is bit too large because the negative drift is more than positive drift. This was done purposely on this conveyor as subsequent points along the horizontal curve have higher belt tensions resulting in more positive drift and it was decided to keep the whole curve at 4 degrees banking. you may of course vary the banking angle along the curve or even at each idler station if you wish, but this is harder to implement on site.

Adjustable Angle Idlers - it is good practice to provide a means of adjusting the banking of the idlers on site in order to allow fine tuning of the banking angle.

Side Guide Rollers - it is common to install side guide rollers to prevent the belt from slipping off the idler set completely in the case of excessive belt drift which may be cause by uneven loading or belt tension variations - refer photo at the top of this help topic for an example of the side guide rollers.

Belt Troughability - it is important the belt is flexible enough to trough correctly under the loaded and empty conditions.

Photo of Horizontally Curved Conveyor

Curved Conveyor A photo of a 4400m long 4400tph Horizontally curved conveyor with 2000kW installed power. Helix delta-T was used for the design.

Horizontal Curve Reports can be generated and printed or saved for each curve

Belt Resonance ...

HELIX delta-T6 Belt Resonance / Flap 👞

Video of Material Bunching caused by Belt Resonance

This conveyor is loaded evenly at the tail end but due to idler and belt resonance the material becomes bunched up. This occurs at certain belt speeds, idler spacings, conveyor load and belt tensions. Helix delta-T6 can calculate whether there will be belt resonance like this on conveyor sections and if present then you can alter the design to ensure this bunching and severe structural vibration does not occur on your conveyor.

What is Belt Resonance?

The tensioned belt supported by the idlers may be modelled as a simply supported plate. This belt has an inherent natural frequency dependent on the span between idlers, mass of belt and material if present and the tension in the belt (similar to a guitar string). The rotating idler roll also has a natural frequency induced by its eccentricity. If the natural frequency of the belt and the rotating idler coincide, resonance occurs. This resonance can have a damaging effect on the idler rolls, bearings and the conveyor structure itself and should be avoided by altering either the idler spacing, belt speed, mass of belt or belt tension.

Apart from damage to conveyor equipment, the resonance can cause material bunching as shown in the video above. This has a detrimental effect on the operation of the plant and apart from causing vibration it can induce blockages and affect the flow through transfer chutes and the loading on downsteam conveyors. Also, material spillage is a major problem.

Helix delta-T Conveyor Design - Belt Flap Report

The delta-T program has a Design Report which calculates the Idler Roll frequency and the Belt Transverse Wave frequency for each section of conveyor, and if the belt frequency and the idler frequency fall within +/- 10% of each other, a warning flag will be raised. Multiple frequency modes are also calculated.

Belt and Idler Resonance Report

The Tension at the beginning and end of each conveyor section is used to calculate the belt sag and then the **Belt Transverse wave frequency**, resulting in a range of frequencies for the conveyor section. This range is compared to the **Idler Roll excitation frequency**.

Belt Resonance +/- Tolerance Band width

You can adjust the band width of the resonance calculations. In earlier versions of the Helix program the band width was fixed to +/- 10% but now you can input the tolerance to use for the warnings. For example for more accuracy use a value say 2%. This will only warn you if the belt frequency and the idler frequency are within +/- 2%. This input value is on the **Input Belt Details input form.**

The sample report shown above shows the calculated values for the Belt Transverse Wave frequency range and the Idler Roll excitation frequencies. If these two frequencies, or multiples of the frequencies, fall within plus or minus 10% of each other a warning flag is raised in the last column of the report. The second last column shows the critical idler spacing for the first mode, ie when n=1.

Usually, the carry side of the belt will be loaded and the mass of material will have a significant damping effect on the belt transverse wave amplitude.

The tensions used are for the conveyor running fully loaded, as this is mode in which the conveyor will be operated for most of the time. You can change the load on each section if required.

Avoid the Warning 2 and 3 cases

Helix Technologies have observed the behaviour of many conveyors and we have come to recognise that the belt flap case to avoid is the one with the mode 2 or 3 warning. In this case the belt transverse wave frequency is half the idler rotation frequency and this is the case which causes the material to bunch up on the belt inducing increasing vibrations which in turn cause more material to bunch up and so on. See picture of material bunching below and video above.

Example of Material Bunching - Warning mode 2 case

Mix up idler spacing

In order to prevent the resonance occurring it is recommended that the idler spacing be changed to random spacing. This moves the Belt Frequency as the spacing changes and so does not allow resonance to build up.

Feeder Calculations ...

HELIX delta-T6 - Feeder Calculation - Theoretical Method 👞

You can calculate the additional forces required to pull material out of a hopper or bin. Select the Calcs, Calculate Feeder Loads menu from the main form. The following form will be displayed:

🖝 Helix delta-T Conveyor Design Program - Calculations Form 1						
Help Exit						
Hopper Pull-out Force Feeder Load	Disc	harge Trajectory	y Transition Distance	Pulley Inertia	Vertical Curves Pulley C	alcs General Calcs
Feeder Load Force Calculation Inpu	ıts - Th	neoretical Metho	bd			
Width of Bin	D	5	m Hopper Geometry	y		⊢D
Length of Hopper Opening	L	5	m Plane Flow	•		
Width of Hopper Opening	В	1.5	m			
Hopper half angle	α	20	deg			
Height of Material in Bin	н	8	m			
Height of Hopper	Hh	2.5	m			
Material / Feeder Description		Coal				Н
Bulk Density of Material	ρ	950	kg/m3			
Effective angle of internal friction	δ	50	deg			
Wall Friction Angle	φ	30	deg			
Feeder Length	Ľf	20	m	F	W	
Feeder Width	W	1.5	m		1×	
Feeder Belt Speed	٧	0.5	m/s			a Hh
Calculation Results						
Initial Surcharge Factor		0	qi 4.81			В
Flow Surcharge Factor		0	qf 1.11	($(\pi)^m$ 1	$(D 2H \tan \alpha)$
Feeder Vertical Load, Initial Conditi	on	(Qi 503.65 ki	$q_i =$	$\frac{n}{4}$ $\frac{1}{2tar}$	$\left \frac{D}{D} + \frac{211 \text{ tan } \alpha}{D} - 1\right $
Feeder Vertical Load, Flow Condition	on	(Qf 116.34 ki	N	$4 \int 2 \tan \alpha$	(B D)
Feeder Initial Horiz. Resistance For	ce	F	Fi 385.82 ki	N	$m n^{1-m} D^{m+2}$	
Feeder Flowing Horiz. Resistance	Force	I	Ff 89.12 ki	$Q_i =$	$q_i \gamma L$ B	
Pull-out Power Required - Starting		I	Pi 192.91 k	W		
Pull-out Power Required - Running			Pr 44.56 kV	W	Calculate	View / Print Report
						ОК

This form allows you to calculate the Additional Tension required to pull a material out of a feeder, bin or hopper. This additional tension is mainly due to the shearing action required to pull the material out of the hopper opening. The method used here is the 'Theoretical' method developed first by arnold and McLean and the then refined by A.W. Roberts and others. Many papers have been published on this subject and some are quite complex, however, Helix have refined the inputs to those shown in this form. The material in the feeder will require testing in order to determine the wall frcition and effective angle of internal friction.

The initial surcharge factor qi is calculated and then the feeder vertical load is calculated using qi, see formula shown on form.

Alternatively, two other emperical methods of calculation are offered - **Bruff's** method and the method proposed in the Bridgestone conveyor design manual, see the **Calcs, Calculate Pull-out Force from Hopper** menu.

Input your feeder and material data and then once you have obtained the feeder vertical and horizontal pull out loads you can use the method shown below to model the belt feeder conveyor.

Once you have the magnitude of these Pullout force tensions, you should design the Feeder as a normal conveyor and add the Pullout Tension as a Tension Adjustment in the Input Sections form.

You will note that two Tensions are given:

- Starting or Initial Pull-out force
- Running or Flow conditions Pullout force

The higher Starting force is required to overcome the interlocking (or bridging) of the material whilst stationary. Once it is flowing, the force required reduces.

HELIX delta-T6 - Feeder Calculation - Bruff's Method

 Helix delta-T Conv Help Exit 	eyor Design Pr	ogran	n - Calculations	Form 1				X
Hopper Pull-out Force	Discharge Traje	ctory	Transition Distan	e Pulley Ine	rtia Vertic	al Curves Pulley C	alcs General Calcs	
Hopper Pull-out Force	Calculation Inpu	ts						
Width of Hopper Botto	m b		1.2 m		C	alculation Method to	Use	
Length of Hopper Bott	om c		2 m			Bruit s Method	•	
Effective Height of Ma	terial (2 x b) h		2.5 m		F	$=\frac{2c^2b^2}{u} + u$	Dg_*n	
Bulk Density of Materi	al D		1600 kg/n	13	-	c+b 10	000	
Co-efficient of Friction	U		0.5 (defa	ult = 0.4)		a state states		
Material "Flow" Factor	- Starting N	5	4 (defa	ult = 4.0)			h	
Material "Flow" Factor	-Running N	s	1 (defa	ult = 1.0)				
Feeder Belt Speed	V		0.5 m/s					
	ſ	Cal	culate		(+	
Calculation Results								
Pull-out Resistance fr	om Hopper - Star	ting	Fs	112.97	kN			
Pull-out Resistance fr	om Hopper - Run	ning	Fr	28.24	kN	View	/ Print Report	
Pull-out Power Requir	ed - Starting		Ps	56.49	kW			
Pull-out Power Requir	ed - Running		Pr	14.12	kW			
							ОК	

This form allows you to calculate the Additional Tension required to pull a material out of a hopper. This additional tension is mainly due to the shearing action required to pull the material out of the hopper opening. The methods shown and used are quick estimation methods and it must be pointed out that the design of feeders and calculating the loads is a complex subject and requires testing of the material properties which is beyond the scope of this program. The methods shown here do not require any testing or special material properties and are provided as an estimate of loads.

Once you have the magnitude of these Pullout force tensions, you should design the Feeder as a normal conveyor and add the Pullout Tension as a **Tension Adjustment** in the Input Sections form.

Two methods of calculation are offered - **Bruff's method** and the method proposed in the **Bridgestone** conveyor design manual. Generally, Bruff's method is more conservative and is the preferred choice for safety. The Bridgestone method is more conservative when the depth of material in the hopper is large.

You will note that two Tensions are given:

- Starting or Initial Pull-out force
- Running or Flow conditions Pullout force

Belt Feeder Calculation Procedure in Helix delta-T6

- Build a model of the conveyor
- Go to Calcs, Feeder Calculations and enter the hopper dimensions and material properties
- Press Calculate
- Transfer the Feeder Flowing Horizontal Resistance Force Ff to the Conveyor Sections, Tension Adjustment column.
- Re-calculate the Conveyor using ISO, CEMA or VISCO buttons
- The Tension Adjustment will have been added to the conveyor model details can be seen in the Tension Calculation Reports
- Note the conveyor absorbed and installed power and the Starting Torque Factor which depends on starting method and motor.

Now you should substitute the Running Pullout Tension with the Starting Pullout Tension in the Tension adjustment and re-calculate the conveyor. If the absorbed power is less than the Installed Power x Starting Torque factor then there is sufficient power and torque to start the conveyor. A numeric example is shown below:

Conveyor Speed = 1.0m/s, belt power = Te x Belt Speed.

Effective Tension (3kN) and Absorbed power without Tension Adjustment = 3kW say.

Calculate hopper and add a Running Tension adjustment of 2kN say. Te is now 5kN and absorbed power 5kW. Installed power is selected as 7.5kW motor started Direct on Line with starting torque factor of 200% FLT.

The Starting Tension adjustment is (say) $4 \times \text{Running} = 8\text{kN}$ say. So for starting the Te becomes 3 + 8 = 11kN or 11kW and we have available $7.5\text{kW} \times 200\% = 15\text{kW}$ so it is OK.

After Calculations are done you can view, Print or Export the report.

The following references are shown if you would like to research these methods further.

References

- McClean A.G, Arnold P.C, 'A simplified approach for the evaluation of feeder loads for mass flow bins', Powder & Bulks Solids Technology Vol.3 No.3
- A.W Roberts et.al, 'Wall Pressure-Feeder Load Interactions in Mass Flow Hopper/Feeder Combinations', Bulk Solids Handling Vol 6 No.4
- A. E Maton, 'Belt Feeder Design: Starting Load Calculations', Bulk Solids Handling 8 2009

Additonal Calculations ...

HELIX delta-T6 - Additional Calculations 👞

Helix delta-T6 has a number of additional calculations for things such as:

- Belt Turnover Calculator see Belt Turnovers (/DeltaT6/BeltTurnovers)
- Discharge Trajectory
- Trough Transition Lengths
- Pulley Inertia
- Pulley Wrap Angle Calculation
- Drive Traction Calculation
- Pulley Bearing L10h life
- Vertical Curve Lift-off radius
- Vertical Curve Buckling Radius
- Vertical Curve Edge Tension Radius
- Horizontal Curve Banking Angle and Belt Drift
- And more...

You can view a sample report by clicking the following link: Sample Design report - pdf file (/DownloadFiles/Helix_delta-T6_Sample_Report01.pdf)

Discharge Directory Calculation

Helix Website - AdditionalCalcs

Pulley Inertia Calculation

▶ Heli	ix delta-T Conveyor	Design Pr	ogram - Calculat	ions Form 1	- 🗆 ×
Help Exit					
Hopper Pull-out Force Feeder Lo	ad Discharge Trajectory	Transition Di	stance Pulley Inertia	Vertical Curves	Pulley Calcs Gener
	FACE WIDTH F BELT WIDTH B) <u>= </u>		
	L1 SHAFT LENGTH L				
Dullau la stia Calaulatian la sta					
Description	C101 Drive pulley dwg W	999-M-057			
Face Width F	F	1950	mm		
Diameter over steel	D	850	mm		
Steel Shell Thickness	t	25	mm		
Rubber Lagging thickness	Lt	12	mm		
End Disc thickness	dt	90	mm		
Shaft Dimension length L1	L1 [2098	mm		
Overall Shaft length	L	3934	mm		
Shaft Dia at Hub	S	320	mm		
Shaft Dia at Bearing	d	240	mm	C	alculate Inertia
Inertia Calculation Results					
Shaft Mass		1977	kg		
Pulley Shell mass		1774	kg	Vie	w / Print Report
Total Assembly Inertia J	J	259.23	kg-m2		
					ОК

Trough Transition Calculation

🖝 Helix delta-T Conveyor Design Program - C	Calculatio	ons Form 1			
Help Exit					
Hopper Pull-out Force Discharge Trajectory Tra	nsition Di	stance Pulle	y Inertia	/ertical	Curves Pulley Calcs General Calcs
	1	/ -		_ a	
	<u> </u>	<u> </u>			
		t _			
	ু ী	$\Gamma \Psi$			
	y off			11	
Applies to 3 equal roll idlers Refer to ISO 5293:20	004 뷥				
Belt Trough Transition Distance					
Description					Calculate H
Idler Trough Angle (lambda)	λ	35	deg		Calculated Trough Depth H = 191
Belt Width	b	1000	mm		Calculated Pulley Offset (H - h) = 91
Belt Modulus 2950	M	10000	kN/m		
Transition Depth h (h = H - pulley offset)	h	100	mm		
Belt Rated Operating Tension 40	Tr	63	kN/m		h [M.,
Belt Tension at Pulley (running)	T1	40	kN		$L_1 = \frac{\alpha}{Sin\lambda} \sqrt{\frac{2\pi}{\Lambda T}} (1 - Cos\lambda)$
Belt Tension at Pulley (starting)	T1s	55	kN		
Allowable Edge Tension Rise running %	F	15	m		
Allowable Edge Tension Rise starting %	Fs	67	m		Calculate Transition
Minimum Transition Distance for Edge Tension, ru	Inning	L1e	1063	mm	
Minimum Transition Distance for Edge Tension, st	arting	L1s	854	mm	View / Print Report
Minimum Transition Distance for Centre Tension >	• 0	L1c	677	mm	
Required Transition Distance		L1	1063	mm	
					ОК

There are many more calculations - see the Demo program Calcs Menu.

Belt Turnovers ...

HELIX delta-T6 - Belt Turnover Calculations 👞

Belt Turnovers are sometimes used on conveyors to flip the belt over through an angle of 180 degrees. This is often used in order to keep the belt cover which is in contact with the idlers on the carry side of the belt also in contact with the idlers on the return side of the belt. This is an advantage when the belt has a Low Resistance Rubber cover on the bottom cover and it is then turned over after the discharge and drive pulleys so that the low resistance rubber is utilised on the return run as well as the carry run. The belt is then turned back over at the tail end of the conveyor. Another advantage of the turnover is that material which may be stuck to the carry side of the belt will be shed by gravity, idler roller contact and vibrations on the return run.

Twisting the belt through 180 degrees causes the belt edge to be elongated and this increases the edge tension in the belt with a corresponding reduction in center tension, similar to the belt transition from troughed to flat at a discharge pulley. A calculation of the magnitude of this tension rise as well as the belt sag between supports is required in order to ensure the belt is not overstressed. Also, the belt should not be subjected to compressive forces (negative tensions) at the centre. Twisting the belt 180 degrees over too short a length will result in excessive edge tension and or compressive centre tensions.

Use the main form main menu Calcs, Calculate Belt Turnover to open the calculation form.

 Helix delta-T Conveyor Design Pro 	gram - Belt Tur	nover Calculations	
Help Exit			
Belt Turnover Calculation			
Belt Turnover Calculation Inputs			
Description and Location of Turnover	Head End Retu	um Belt Turnover	
Length of Turnover L	22 🌧	m	
Belt Tension at Tumover T	60	kN	
Belt Width BW	1200	mm 1200	Turnover Has Quarter Support Rollers
Belt Mass Bm	45	kg/m	
Belt Breaking Tension Rating Tb	2500	kN/m 2500	ST-2500
Belt Allowable Run Tension Tr	352	kN/m 352	
Belt Modulus BM	180000	kN/m 180000	Calculate Belt Turnover Stresses
Belt Steel Cord Diameter Cd	5	mm 5	
Calculation Results			
Belt Stress due to Belt Tension	σT	50 N/mm2	
Belt Edge Twist Stress	σE	439.66 N/mm2	
Belt Centre Twist Stress	σC	-219.8 N/mm2	
Bending Stress Vertical Top Edge	σVT	-16.83 N/mm2	
Bending Stress Vertical Centre	σVC	3.86 N/mm2	
Bending Stress Vertical Bottom Edge	σVB	24.28 N/mm2	Allowable Belt Tension Rise % 15 %
Bending Stress Horizontal Edge	σBH	10.38 N/mm2	Allowable Belt Stress at Edge 404.8 N/mm2
Total Belt Stress at Top Edge	σΤορ	483.21 N/mm2	Not OK Belt Safety Factor Top Edge 5.17
Total Belt Stress at Centre	σCen	-165.9 N/mm2	Not OK Belt Safety Factor Centre -15.0
Total Belt Stress at Bottom Edge	σBot	524.32 N/mm2	Not OK Belt Safety Factor Bottom 4.77
Belt Sag at Centre	Sag	111 mm	
Belt Sag percent at Centre	Sag%	1.01 %	OK View / Print Report
			ОК

Use the main form main menu Calcs, Calculate Belt Turnover to open the calculation form.

Helix delta-T Conveyor Design	Program - Belt Tu	rnover Calculations	0 T.A.S		
Help Exit					
Belt Turnover Calculation					
Belt Turnover Calculation Inputs					
Description and Location of Turnov	er Head End Ret	um Belt Tumover			
Length of Turnover	L 22	m			
Belt Tension at Turnover	T 60	kN			
Belt Width B	W 1200	mm 1200		Turnover Has Quarter Su	pport Rollers
Belt Mass	3m 45	kg/m			
Belt Breaking Tension Rating	Ть 2500	kN/m 2500	ST-2500		
Belt Allowable Run Tension	Tr 352	kN/m 352			
Belt Modulus E	IM 180000	kN/m 180000		Calculate Belt Turnov	er Stresses
Belt Steel Cord Diameter	Cd 5	mm 5			
Calculation Results					
Belt Stress due to Belt Tension	σT	50 N/mm2			
Belt Edge Twist Stress	σE	439.66 N/mm2			
Belt Centre Twist Stress	σC	-219.8 N/mm2			
Bending Stress Vertical Top Edge	σVT	-16.83 N/mm2			
Bending Stress Vertical Centre	σVC	3.86 N/mm2			
Bending Stress Vertical Bottom Edg	e <mark>σVB</mark>	24.28 N/mm2	Allow	able Belt Tension Rise %	15 %
Bending Stress Horizontal Edge	σBH	10.38 N/mm2	Allow	able Belt Stress at Edge 4	104.8 N/mm2
Total Belt Stress at Top Edge	σΤορ	483.21 N/mm2	Not OK Belt S	Safety Factor Top Edge	5.17
Total Belt Stress at Centre	σCen	-165.9 N/mm2	Not OK Belt S	Safety Factor Centre	-15.0
Total Belt Stress at Bottom Edge	σBot	524.32 N/mm2	Not OK Belt S	Safety Factor Bottom	4.77
Belt Sag at Centre	Sag	111 mm			
Belt Sag percent at Centre	Sag%	1.01 %	OK	View / Prin	t Report
					ок

Enter the Belt Tension at the turnover, belt width, belt mass, belt strength and allowable run tension, belt modulus and if it is a steel belt enter the cord diameter. If the belt is a fabric belt the cord diameter can be entered as 1mm.

If the belt has quarter turn support rollers (angled at 45 degrees) to support the belt in the turnover, check the Turnover Has Quarter Support Roller checkbox to ON, leave it off of there are no intermediate support rollers. This check box does not refer to a set of vertical support rollers at the midpoint. The Quarter turn support rollers help to reduce the belt sag in the turnover.

Now use the spin button on the Length of Turnover input box to find the shortest turnover length which does not have a negative centre tensions. In the example above the 22m long turnover has excessive edge tension and negative centre tension, flagged by the Red **Not OK** warning labels. Increasing the turnover length to 39m, as shown below, reduces the edge tension to acceptable values but the centre tension is still negative.

Helix delta-T Conveyor Design Pro	gram - Belt Tur	nover Calculations	(C. 7.7.	1.01	
Help Exit					
Belt Turnover Calculation					
Belt Tumover Calculation Inputs					
Description and Location of Turnover	Head End Retu	um Belt Tumover			
Length of Turnover L	39 🚔	m			
Belt Tension at Turnover T	60	kN			
Belt Width BW	1200	mm 1200		Turnover Has Quarter So	upport Rollers
Belt Mass Bm	45	kg/m			
Belt Breaking Tension Rating Tb	2500	kN/m 2500	ST-2500		
Belt Allowable Run Tension Tr	352	kN/m 352			
Belt Modulus BM	180000	kN/m 180000		Calculate Belt Turnov	ver Stresses
Belt Steel Cord Diameter Cd	5	mm 5			
Calculation Results					
Belt Stress due to Belt Tension	σT	50 N/mm2			-
Belt Edge Twist Stress	σE	140.08 N/mm2			
Belt Centre Twist Stress	σC	-70.04 N/mm2			
Bending Stress Vertical Top Edge	σVT	-2.76 N/mm2			
Bending Stress Vertical Centre	σVC	3.86 N/mm2			
Bending Stress Vertical Bottom Edge	σVB	10.39 N/mm2	ļ	Allowable Belt Tension Rise %	15 %
Bending Stress Horizontal Edge	σBH	3.31 N/mm2	ŀ	Allowable Belt Stress at Edge	404.8 N/mm2
Total Belt Stress at Top Edge	σΤοр	190.62 N/mm2	OK E	Belt Safety Factor Top Edge	13.11
Total Belt Stress at Centre	σCen	-16.18 N/mm2	Not OK	Belt Safety Factor Centre	-154.
Total Belt Stress at Bottom Edge	σBot	203.78 N/mm2	OK E	Belt Safety Factor Bottom	12.27
Belt Sag at Centre	Sag	350 mm			
Belt Sag percent at Centre	Sag%	1.79 %	OK	View / Prin	nt Report
					ОК

Increasing the turnover length to 45m, as shown below, reduces the edge tension to acceptable values and increases the centre tension to positive values.

 Helix delta-T Conveyor Design Pr 	ogram - Belt Tur	nover Calculations	1.2.2	1.00	
Help Exit					
Belt Turnover Calculation					
Belt Turnover Calculation Inputs					
Description and Location of Turnover	Head End Ret	um Belt Turnover			
Length of Tumover L	45 🌲	m			
Belt Tension at Turnover T	60	kN			
Belt Width BW	1200	mm 1200		Turnover Has Quarter S	Support Rollers
Belt Mass Bm	45	kg/m			
Belt Breaking Tension Rating Tb	2500	kN/m 2500	ST-2500		
Belt Allowable Run Tension Tr	352	kN/m 352			
Belt Modulus BM	180000	kN/m 180000		Calculate Belt Tumo	ver Stresses
Belt Steel Cord Diameter Cd	5	mm 5			
Calculation Results Belt Stress due to Belt Tension	σT	50 N/mm2			
Belt Edge Twist Stress	σE	105.23 N/mm2			
Belt Centre Twist Stress	σC	-52.61 N/mm2			
Bending Stress Vertical Top Edge	σVT	-1.12 N/mm2			
Bending Stress Vertical Centre	σVC	3.85 N/mm2			
Bending Stress Vertical Bottom Edge	σVB	8.76 N/mm2		Allowable Belt Tension Rise $\%$	15 %
Bending Stress Horizontal Edge	σBH	2.49 N/mm2		Allowable Belt Stress at Edge	404.8 N/mm2
Total Belt Stress at Top Edge	σΤορ	156.6 N/mm2	OK	Belt Safety Factor Top Edge	15.96
Total Belt Stress at Centre	σCen	1.24 N/mm2	OK	Belt Safety Factor Centre	2016.
Total Belt Stress at Bottom Edge	σBot	166.48 N/mm2	OK	Belt Safety Factor Bottom	15.02
Belt Sag at Centre	Sag	465 mm			
Belt Sag percent at Centre	Sag%	2.07 %	Medium	View / Pri	int Report
					ОК

The belt sag has increased to 465mm and this is just over 2% of the length of the turnover between quarter support rolls.
🕳 Helix o	elta-T Conveyor Desi	gn Prog	gram - Belt Tur	nover Calc	ulations		1.0.00		
Help	Exit								
Belt Turno	over Calculation								
Belt Tur	nover Calculation Inputs								
Descript	ion and Location of Turn	over	Head End Retu	ım Belt Tum	nover				
Length o	of Tumover	L	45 🌲	m					
Belt Ten	sion at Tumover	Т	60	kN					
Belt Wid	th	BW	1200	mm	1200		Turnover Has Quarter	Support F	Rollers
Belt Mas	s	Bm	45	kg/m					
Belt Brea	aking Tension Rating	Ть	2500	kN/m	2500	ST-2500			
Belt Allo	wable Run Tension	Tr	352	kN/m	352				
Belt Mod	dulus	BM	180000	kN/m	180000		Calculate Belt Turr	over Stres	ses
Belt Stee	el Cord Diameter	Cd	5	mm	5				
	tion Results								
Belt Stre	ess due to Belt Tension		σT	50	N/mm2			-	
Belt Edg	ge Twist Stress		σΕ	105.23	N/mm2				
Belt Cer	ntre Twist Stress		σC	-52.61	N/mm2				
Bending	Stress Vertical Top Edg	е	σVT	3.47	N/mm2				
Bending	Stress Vertical Centre		σVC	3.76	N/mm2				
Bending	Stress Vertical Bottom E	dge	σVB	4.04	N/mm2		Allowable Belt Tension Rise %	15	%
Bending	Stress Horizontal Edge		σBH	0.31	N/mm2		Allowable Belt Stress at Edge	404.8	N/mm2
Total Be	elt Stress at Top Edge		σΤορ	159.01	N/mm2	OK	Belt Safety Factor Top Edge	15.72	
Total Be	elt Stress at Centre		σCen	1.14	N/mm2	OK	Belt Safety Factor Centre	2186.	
Total Be	elt Stress at Bottom Edge		σBot	159.58	N/mm2	OK	Belt Safety Factor Bottom	15.67	
Belt Sag	g at Centre		Sag	7447	mm				
Belt Sag	g percent at Centre		Sag%	16.55	%	High	View / F	rint Repor	t
									ОК

The case without quarter support rolls has a very large sag of 7447mm and is flagged as High sag because the sag exceeds 5% of span. A flag of Medium is shown for sag between 2% to 5% but there is no specified limit, the amount of acceptable sag is up to the designer.

The belt edge tension and centre tension stresses are calculated from the elongation of the belt due to twisting. The belt sag is calculated as for a catenary using only the first term of the series.

SAG

$$y = \frac{S^2 (Wb + Wm) \cdot g}{8 \cdot T} \quad \text{and} \quad y = \frac{\% sag \cdot S}{100}$$

Bending stresses in the steel cords are generally low and are calculated from the curvature in the cables due to belt sag.

You should use the minimum turnover length which yields acceptable edge tension and positive centre tension and depending on the belt tension in the turnover, quarter support rolls will probably be required in order to limit the belt sag to acceptable levels.

Repeat the calculations for all belt tensions which will be experienced in the Turnover. You can print out the calculation report by using the **View / Print Report** button

Pipe Conveyors ...

Pipe Conveyors

The Helix delta-T6 Conveyor Design program has the ability to design Pipe Conveyors. In a Pipe Conveyor, the belt is formed into a circular tube which fully encloses the conveyed material. The conveyor belt is an open trough under the loading chute and it is trained and formed into an enclosed tube for the length of the conveyor until it is once again opened to a troughed shape at the discharge pulley.

Download an example report of a Pipe Conveyor modeled in the Helix delta-T6 Conveyor Design Program: Demo 22 Existing PipeConveyor PC01 Coal 1000tph 4km Helix delta T6 Design Report.pdf

(/DownloadFiles/Demo_22ExistingPipeConveyorPC01Coal1000tph4km_DesignReport.pdf)

In Helix delta-T6 a **Pipe Conveyor** is denoted by selecting or inputting **6 Roll Idlers and a 360** degree Troughing Angle.

A typical Pipe Conveyor cross-sectional view. The belt is formed into a tubular shape by 6 idler rollers.

Summary of Pipe conveyor Advantages

• Conveyed Material is fully enclosed and weather protected

- Enclosing the conveyed material has environmental benefits with limited spillage
- Pipe Conveyors can generally navigate tighter (smaller radius) vertical and horizontal curves than conventional troughed conveyors
- Maximum lump size = 25% to 33% of Pipe Diameter (use lower % for high proportion of lumps)
- Maximum Loading = < 70% of load area for small lumps
- Maximum Loading = < 60% of load area for larger lumps
- Even / Constant Load Feed is required to prevent overloading
- Maximum Incline angle can be larger than for troughed conveyors, up to ~27 degrees for sluggish flowing material
- Maximum Recommended Idler rotation speed is 600 750 rpm
- Tube Fold Transition Length: Allow at least 25 to 40 x D for Folding and unfolding belt for Fabric belts (use larger value for large Pipe Dia)
- Tube Fold Transition Length: Allow at least 40 to 50 x D for Folding and unfolding belt for Steel belts (use larger value for large Pipe Dia)

Summary of Pipe conveyor Disadvantages

- Special Belt is required. The conveyor Belt must be designed for the Pipe Conveyor application and have correct transverse stiffness for the application
- The belt must be stiff enough to be self supporting in tube form
- The belt edge sections must be flexible in the transverse direction to allow for the overlap folding
- Steel cord belts have transverse fabric layers to ensure sufficient self supporting stiffness
- Pipe Diameter (D) = Belt width / 4
- Maximum lump size = 25% to 33% of Pipe Diameter (use lower % for high proportion of lumps)
- Maximum Loading = < 70% of load area for small lumps
- Maximum Loading = < 60% of load area for larger lumps
- Material Surcharge Angle does not affect load capacity
- Even / Constant Load Feed is required to prevent overloading
- Belt Thickness affects the load area of the tube
- Maximum Incline angle can be larger than for troughed conveyors, up to ~27 degrees for sluggish flowing material
- Maximum Recommended Idler rotation speed is 600 750 rpm
- Tube Fold Transition Length: Allow at least 25 to 40 x D for Folding and unfolding belt for Fabric belts (use larger value for large Pipe Dia)
- Tube Fold Transition Length: Allow at least 40 to 50 x D for Folding and unfolding belt for Steel belts (use larger value for large Pipe Dia)
- Carry side belt resistance is normally higher than for a similar capacity troughed conveyor due to less load area availability and higher proportion of belt mass to material conveyor material mass
- Return belt resistance is normally substantially higher than conventional troughed conveyors due to larger number of return belt rollers (rim drag is increased)

Calculation Methods

Helix Troughed Conveyor Calculation Method

The Helix delta-T6 Program has three main methods of estimating the conveyor resistances, namely:

- ISO 5048 (DIN 22101) Method
- CEMA method
- VISCO method this method uses the rubber rheology properties to calculate the indentation resistance of the rubber belt on the conveyor idler rollers and also calculates the material and belt flexure losses, the idler rotation (rim drag) losses and the belt to idler scuffing losses. These four components make up the total resistance to movement of the conveyor belt. This VISCO method is also used to calculate conveyor resistance using Low Resistance Rubber (LRR).

The above methods have been successfully used to design many thousands of conventional troughed conveyors by Helix users in more than 30 countries.

The **VISCO** method is considered to be the most flexible and most accurate method of estimating the conveyor resistance because it allows the user to adjust multiple input values for different types of equipment which all affect the total conveyor resistance. For Example:

- The user can specify the belt top and bottom cover rubber properties.
- The user can specify the belt and material flexure factor.
- The user can specify the Idler Rotation Resistance.
- The user can specify the Idler Scuffing Resistance.

The above main resistances are all influenced by the load per m on the belt, the belt speed V, the idler spacing, the number of rollers, the idler roll diameter, belt top and bottom cover rubber properties (indentation hysteresis losses), the current belt tension which affects the amount of belt sag and resulting material and belt flexure losses, the accuracy of the idler vertical and horizontal alignment.

In the Helix delta-T program, the user can adjust all of these parameters and see the effects on the conveyor. A Sensitivity Analysis can be performed to arrive at an optimised conveyor design which will have the lowest total cost of ownership i.e capital, maintenance and operating cost.

Helix Pipe Conveyor Calculation Method

The resistance of a Pipe Conveyor may also be broken down into four main categories, namely:

- 1. Belt to Idler Indentation Resistance
- 2. Material and Belt Flexure losses
- 3. Idler Rotation (Rim Drag) Resistances
- 4. Belt to Idler scuffing losses

1. Belt to Idler Indentation Resistance

In a Pipe Conveyor, the folded belt adds additional load on the idler rolls imparted by the stiffness of the belt. There are also more idler rollers (normally 6 for Pipe Conveyor vs 3 for a Troughed Conveyor) and more idler face length is in contact with the belt.

The gravitational force resulting from the mass of the material and belt is taken on the three lower idlers, as it is in a conventional troughed belt.

The upper two wing rollers and the top centre roller also have indentation losses due to the folding of the stiff belt into a tubular shape.

There is also a resultant force on the lower three rollers due to the belt tension in a Convex vertical curve.

In a Concave vertical curve, there is a resultant force applied to the three upper rollers due the

belt tension.

In addition, the wing rollers (the two on each side of tube) must also take the resultant force due to the tensioned belt being curved around Horizontal curves.

The belt to idler indentation forces in a Pipe Conveyor may be summarised as follows:

- Belt Folding force on 4 side rollers and top roller
- Gravitational Forces due to belt and material mass on bottom centre and lower wing rollers
- Convex Curve Belt Deviation Load on bottom centre and lower wing rollers
- Concave Curve Belt Deviation Load on top centre and upper wing rollers
- Horizontal Curve Belt Deviation Load on lower wing and upper wing rollers on inside of curve

In the Helix delta-T6 program, when you perform a Pipe Conveyor calculation, all of these individual indentation losses are calculated for each section of the conveyor and added to arrive an equivalent friction factor f for indentation resistance.

The user can see the resulting proportion of conveyor resistance attributed to **Indentation**, **Flexure**, **Rolling Resistance and Belt Scuffing** in the Viscoelastic Friction Factor Report.

2. Material and Belt Flexure Resistance

In a Pipe Conveyor, as well as a Troughed Conveyor, the belt will tend to sag down to some extent between supporting idlers under gravitational forces induced by the material and belt mass.

The pipe tube will also tend to bulge slightly between idler stations and there is a resulting resistance loss due the flexure of the material and belt as it deforms in travelling from one idler station to the next. The total material and belt flexure loss is a function of the belt tension, the amount of belt sag, the resistance of the material moving / shearing (internal co-efficient of friction of the material) and amount of belt flexure resistance due to its stiffness. Estimating this flexure loss is performed as described in the Belt and Material Flexure Calculation help topic in the Helix delta-T6 Program.

Adjusting the Material Flexure

Helix Website - Pipe Conveyors

To adjust the amount of resistance due to belt and material flexure you need to adjust the **Material Flexure Adjustment Factor** input value on the Viscoelastic Belt Properties Input Form. The default input value is set to 1.0 and this is the setting required for Iron Ore. You need to adjust this input value to reflect the relative internal co-efficient of friction of the material being transported. For example, if it is say dry Wheat, use a factor of 0.8 or even 0.7, and if the material is very hard, sharp angular ore or rock, use a value of say 1.1 or 1.2. The amount of flexure also depends on the amount of belt sag and also the troughing angle of the Idlers, the sag is calculated automatically and adjusted for each section.

3. Idler Rotation Resistance

In a Pipe Conveyor, as well as a Troughed Conveyor, the idler rollers have a resistance to rotation. The amount resistance depends on the manufacture of the idler, bearing and seal type. The actual value of the resistance can vary considerably from idler to idler and for a pipe conveyor, due to the higher number of idler rollers, this resistance can have a considerable effect on the total Pipe Conveyor resistance.

4. Idler Skew and Tilt Resistance

If the idler rolls are not aligned perpendicular to the belt travel direction, a scuffing resistance results. The magnitude of this scuffing resistance depends on the amount of misalignment as well as the co-efficient of friction between the belt and idler roll. The co-efficient of friction will in turn depend on whether the belt surface is dry, wet or moist.

Pipe Conveyor Friction Factor

The conveyor resistances for each section of the conveyor are calculated using the methods shown in the Viscoelastic calculation method as described above. The four main resistance components (Indentation, Flexure, Idler Rotation and Skew and Tilt resistance) are then added to give a total resistance **R** for each section of conveyor. This total section resistance in Newtons is then used to back calculate the Friction factor μ because the masses and idler loads m are known.

Pipe Conveyor Friction Factor Report

The following report shows the values of each component of the conveyor resistances.

http://helixweb.com.au/DeltaT6/PipeConveyors

Helix Website - Pipe Conveyors

No	Length	Spacing	factor f	fi	%	rad/s	fm	%	fr	%	ft	%	factor f
1	5.10	1.00	0.0396	0.00646	16.3	1671	0.00045	1.1	0.03088	77.9	0.00183	4.6	0.0396
2	5.33	1.00	0.0247	0.00859	34.8	1257	0.00111	4.5	0.01315	53.3	0.00183	7.4	0.0396
3	98.45	1.00	0.0247	0.00859	34.8	1257	0.00110	4.5	0.01315	53.3	0.00183	7.4	0.0396
4	102.22	1.00	0.0247	0.00859	34.8	1257	0.00109	4.4	0.01315	53.3	0.00183	7.4	0.0396
5	263.45	1.00	0.0322	0.01610	50.1	1257	0.00107	3.3	0.01315	40.9	0.00183	5.7	0.0568
6	577.95	1.00	0.0324	0.01634	50.5	1257	0.00105	3.2	0.01315	40.6	0.00183	5.7	0.0574
7	282.91	1.00	0.0330	0.01703	51.6	1257	0.00100	3.0	0.01315	39.8	0.00183	5.6	0.0590
8	84.10	1.00	0.0337	0.01780	52.8	1257	0.00095	2.8	0.01315	39.0	0.00183	5.4	0.0607
9	93.48	1.00	0.0342	0.01824	53.4	1257	0.00093	2.7	0.01315	38.5	0.00183	5.4	0.0616
10	160.04	1.00	0.0344	0.01851	53.8	1257	0.00091	2.7	0.01315	38.2	0.00183	5.3	0.0621
11	355.62	1.00	0.0345	0.01861	53.9	1257	0.00091	2.6	0.01315	38.1	0.00183	5.3	0.0625
12	505.50	1.00	0.0349	0.01898	54.5	1257	0.00089	2.6	0.01315	37.7	0.00183	5.3	0.0635
13	380.84	1.00	0.0291	0.01331	45.7	1257	0.00085	2.9	0.01315	45.1	0.00183	6.3	0.0504
14	641.13	1.00	0.0318	0.01605	50.4	1257	0.00080	2.5	0.01315	41.3	0.00183	5.8	0.0565
15	415.65	1.00	0.0324	0.01668	51.4	1257	0.00077	2.4	0.01315	40.6	0.00183	5.7	0.0578
16	64.00	1.00	0.0243	0.00859	35.3	1257	0.00074	3.0	0.01315	54.1	0.00183	7.5	0.0395
17	39.12	1.00	0.0406	0.00756	18.6	1429	0.00029	0.7	0.03088	76.1	0.00183	4.5	0.0406
18	15.00	1.00	0.0406	0.00756	18.6	1429	0.00029	0.7	0.03088	76.1	0.00183	4.5	0.0406
19	25.00	1.00	0.0406	0.00756	18.6	1429	0.00029	0.7	0.03088	76.1	0.00183	4.5	0.0406
20	44.60	1.00	0.0408	0.00756	18.5	1429	0.00051	1.2	0.03088	75.7	0.00183	4.5	0.0408
C:\Use 4km.x	ers\Peter\Do ml	cuments\He	lix\DeltaT6F	Rego64bit\C	onveyors\T	'emp\Demo	22 Existing P	ipe Conve	yor PC01 Co	bal 1000tph	<u>م</u>	-	Helix
Ver 6.	0.20.3					Licenced to	Helix Techr	ologies				Т	echnologies

	tion / Son	tion	1			fri	otion fact	or f (loor	lod)			1	Empty
<u> 31</u>	LION / Sec		Total	Ir	dentatio	n	Mati.8	Belt	Idler	Drag	Idler Ske	w & Tilt	Empty
No	Section Length	Idler Spacing	Loaded Friction factor f	Indent factor fi	Indent factor %	Freq uency rad/s	Flexure friction fm	Flexure friction %	Drag factor fr	Drag factor %	Tilt friction ft	Tilt friction %	Empty Friction factor f
21	44.60	1.00	0.0408	0.00756	18.5	1429	0.00051	1.2	0.03088	75.7	0.00183	4.5	0.040
22	10.00	1.00	0.0412	0.00756	18.4	1429	0.00091	2.2	0.03088	75.0	0.00183	4.5	0.041
23	26.03	1.00	0.0412	0.00756	18.4	1429	0.00090	2.2	0.03088	75.0	0.00183	4.5	0.041
24	11.06	1.00	0.0412	0.00756	18.4	1429	0.00089	2.2	0.03088	75.0	0.00183	4.5	0.041
25	415.65	1.00	0.0412	0.00756	18.4	1429	0.00088	2.1	0.03088	75.0	0.00183	4.5	0.041
26	641.13	1.00	0.0450	0.01144	25.4	1429	0.00084	1.9	0.03088	68.6	0.00183	4.1	0.045
27	367.23	1.00	0.0458	0.01228	26.8	1429	0.00075	i 1.6	0.03088	67.5	0.00183	4.0	0.045
28	519.25	1.00	0.0448	0.01140	25.4	1429	0.00068	1.5	0.03088	68.9	0.00183	4.1	0.044
29	355.62	1.00	0.0513	0.01797	35.0	1429	0.00064	1.2	0.03088	60.2	0.00183	3.6	0.051
30	160.04	1.00	0.0526	0.01929	36.7	1429	0.00060	1.1	0.03088	58.7	0.00183	3.5	0.052
31	93.48	1.00	0.0536	0.02035	37.9	1429	0.00057	1.1	0.03088	57.6	0.00183	3.4	0.053
32	84.10	1.00	0.0542	0.02097	38.7	1429	0.00055	i 1.0	0.03088	56.9	0.00183	3.4	0.054
33	282.91	1.00	0.0545	0.02122	38.9	1429	0.00055	5 1.0	0.03088	56.7	0.00183	3.4	0.054
34	577.95	1.00	0.0551	0.02184	39.6	1429	0.00053	1.0	0.03088	56.1	0.00183	3.3	0.055
35	263.45	1.00	0.0568	0.02358	41.5	1429	0.00050	0.9	0.03088	54.4	0.00183	3.2	0.056
36	102.22	1.00	0.0586	0.02541	43.4	1429	0.00047	0.8	0.03088	52.7	0.00183	3.1	0.058
37	98.45	1.00	0.0595	0.02628	44.2	1429	0.00046	0.8	0.03088	51.9	0.00183	3.1	0.059
38	10.39	1.00	0.0407	0.00756	18.6	1429	0.00045	i 1.1	0.03088	75.8	0.00183	4.5	0.040
Total	s:		822	3.05	0.45				0.00	1	0.00	0	
Desig													
Desigi This	ners Com is a demo	ments nstration r	nodel of a	n existing	pipe con	veyor. Th	e pipe diar	meter is t	oo small fo	r the load	capacity -	pipe is 77	% full and
this is the h rise ii Calcu	s larger th orizontal a n the curv ulation for	an 70% re and vertica es and als Pipe Con	comment al curve ra so cause ti veyor und	dii used a he belt to er Calcs r	may resul re 300m - collapse i nenu in H	t in mater this is to n the cur elix delta	o small foi ves. Curve -T6.	e and ope r the pipe e radii sho	conveyor ould be incr	ope tube and will c reased an	and is not i ause exces d load dec	recommen ssive belt t reased. Se	ded. Also ension ee Curve

C:Users\PeterDocuments\Helix\DeltaT6Rego64bit\Conveyors\TempIDemo 22 Existing Pipe Conveyor PC01 Coal 1000tph 4km.xml Ver 6.0.20.3 Licenced to Helix Technologies Technologies You can see from the above report that in the carry sections of the Pipe Conveyor, the total friction factor varies in sections with no horizontal curves and increases in the curved sections. (increases from 0.0247 in section 4 with no horizontal curve to 0.0322 in section 5 with 300m radius horizontal curve)

On the return belt sections from 26 onwards, the friction factor is higher than carry sections at about 0.045 to 0.056; However, this does not mean the section resistance is higher in the return run because the mass is much lower as there is no material being transported.

 $\begin{array}{c|c} \hline mg & R = umg \\ \hline \circ & \circ & \bullet \\ \hline \circ & \circ & \bullet \\ \hline \end{array}$ Resistance **R** is lower on the return belt even though **µ** is higher because **m** is

much lower.

Proportions of Indentation, Flexure, Idler Drag and Idler Skew (Scuffing) Losses

In the report shown above you can see the proportions of the resistances as a percentage of the total for each section:

Carry side (Section 11)

- Indentation loss is about 53.9%
- Flexure loss is about 2.6%
- Idler Drag loss is about 38.1%
- Idler Skew loss is about 5.3%
- Total µ = 0.0345

Corresponding Return side (Section 29)

- Indentation loss is about 35.0%
- Flexure loss is about 1.2%
- Idler Drag loss is about 60.2%
- Idler Skew loss is about 3.6%
- Total µ = 0.0513

It is clear that there is lower Flexure loss on the return run (no material) and the additional idlers make the Idler drag losses proportionally higher on the return side than on the carry side. Indentation losses are lower on the return run than the carry side due to no material mass. The proportions of each resistance component can vary widely depending on the belt rubber properties, belt speed, idler spacing and idler rim drag. The designer should explore different settings to get an optimal design.

Steps for Design of a Pipe Conveyor

In Helix delta-T6 a **Pipe Conveyor** is denoted by selecting or inputting **6 Roll Idlers and a 360** degree Troughing Angle.

- Build the model of the conveyor in the normal way as described in the Getting Started help topic in the Helix delta-T6 Program.
- In the Input, **Input Carry Idlers** form, select a suitable Pipe Conveyor Idler and ensure the **Number of Rolls is set to Six (6)**
- In the Input, **Input Return Idlers** form, select a suitable Pipe Conveyor Idler and ensure the **Number of Rolls is set to Six (6)**
- In the **Input Belt Details** form you need to select a Belt Width and the corresponding recommended Pipe Diameter of Belt Width / 4 will be displayed
- In the Idler Trough Angle dropdown, select the 360 degree option
- The belt and tube cross-section will be drawn and the percentage full etc. calculated for you

08/02/2019

Help Exit			
put Details Manually Selecte	d Belt Details		
Input Belt Width, Speed, Capa	city Details		Material
Design Capacity	600	tonnes/hr Belt Selection Mode	Use Manual
Belt Speed	5	m/s Manual V	Lisk Bulk Density 1150 kg/hi3 tabsheet to select a belt from the
Belt Width	1400 ~	mm Pipe Conveyor	High Bulk Density 1150 Kg/m3 database or enter your own belt details
dler Trough Angle	360 ~	deg Idler FW 212 mm	n Surcharge Angle 20 deg
Belt Top Cover T	13	mm	Show Labels on Sketch
Belt Bottom Cover T	7	mm Re-calculate	Surcharge Angle = 20 Trough Angle = 360
Allowable Sag %	1.5	% Conv	Deit Speed – Sins Buik Density – 1000 kg/ii S
Belt Mass Input	17.6	(0 for Auto calc)	
Belt Mass Calculated	17.6	kg	
Maximum Allowable Tension Rise in Belt During Startup	150	%	
Belt Resonance +/- Tolerance Band Width	10	% (default = 10%)	
Vertical Curve Calculation In	puts		
Allowable EdgeTension Rise	15	% (default = 15%)	
% Beltmass for Liftoff Calcula	tion 75	% (default = 75%)	
Concave Curve Safety Facto	or 1.2		
Calculated Belt Capacity Val	ues		
Belt Percent Full	47.3	%	
Material Mass	33.33	kg/m	
Minimum Required Edge Dis	tance 0	mm	Belt Width = 1400 mm Capacity = 600 tph Percent Full = 47.3% Flooded Capacity = 1389 tph
Belt Overlap Length	188	mm	Roll Dia = 152 mm Roll Face = 212 mm Pipe Dia = 350 mm Burden Depth = 146 mm Burden Width = 296 mm
Burden Depth	146	mm	
Burden Width	296	mm	
Capacity at 100% Full (Low BD)	1269	tonnes/hr	
Flooded Belt Capacity (Hi BE	1389	tonnes/hr	
Flooded Belt Material Mass	Hi BD) 77 19	ka/m	

- Now you can go to the Input Carry Idlers form, press the **Open Idler Database** button and select a suitable idler from the **Helix Pipe Conveyor** idlers category. Choose an idler for the Belt Width and Pipe Diameter you have input in Belt Details.
- The **Pipe Conveyor Idlers** which are in the Helix delta-T Idler Database are presented as a design guide only. The Pipe Conveyor Idler database is derived from the Sandvik Carry idler data with the Idler Face width, Bearing Centres and Support Centre dimensions adjusted to suit the selected Pipe Diameter. These specific idler dimensions are theorectical only, designers must obtain real idler data from their own manufacturer for final design.
- Repeat the pipe conveyor Idler Selection process described above for the **Return Idlers**
- The Number of Idler Rolls must be six (6) for a Pipe Conveyor
- Now return to the to Belt Input Details form and the Belt Cross-section will be redrawn with the selected Idlers and Belt Width
- The cross-section above shows the percentage full and belt overlap length as well as the chosen idlers. Note the idler rolls overlap each other slightly in this diagram, these are staggered idler panels with Offset idlers
- Ensure the conveyor material low and high bulk density are correct, adjust if necessary
- Adjust the belt speed to yield a pipe percentage full of less than 70% for fine material or less than say 60% full for material with large lumps.
 The Maximum Belt speed will depend on the Idler Load and Bearing life and should be adjusted to give an idler rotation speed of less than 600 rpm.
- There are no known published maximum belt speed limits for Pipe Conveyors, but as for Troughed conveyors, a speed higher than about 5.0m/s is considered an upper limit, especially with 152mm diameter rollers. Belt Speeds exceeding 5.0m/s may result in resonance problems, material shifting in the pipe tube which can cause material bunching and force the belt to open and spill material. There are many factors which can affect the Belt Resonance / Material Bunching phenomenon such as belt tension, belt sag, idler spacing, idler roll diameter, idler rotation speed (belt seed) and caution should be exercised in selecting a reasonable belt speed which is not too high. Details and videos of Belt

Resonance and Material bunching are shown in the Helix website at Helix Conveyor Design -Belt Resonance (/DeltaT6/BeltResonance)

- Complete all Input Values in all the other forms in the main form **Input Menu** including the Takeup, Drive and Motor Inputs etc.
- You also need to complete all the Viscoelastic Belt Input Details and the Viscoelastic Idler Input Details.
- Once all Input values have been completed, you can do the conveyor calculation using the VISCO method. Pipe Conveyor calculations must be performed using the VISCO method. The ISO and CEMA methods will **not** yield correct belt tensions and power for a Pipe Conveyor, but are included for comparison purposes only.
- Once you have completed all inputs and the VISCO calculation method, you can view all the results by using the Reports menu
- The next step for Pipe Conveyors is to check the suitability of the Vertical and Horizontal curve radii. Use the Horizontal Curve Calculations help topic in the Helix delta-T6 Program for further explanation.

Summary of Design Guidelines for Pipe Conveyors

Pipe Conveyors have some additional features compared to conventional troughed conveyors, i.e the belt has to be formed into a tube after the loading point and it also has to be opened from tube to flat at the discharge pulley. These sections of the belt are called transitions; they are similar to the Trough Transition in a conventional Troughed belt conveyor, except that the edge length (hypotenuse) is longer as the belt goes from flat at the pulley to more than 360 degrees of closure.

- Conveyor Belt must be designed for the Pipe Conveyor application and have correct transverse stiffness for the application
- Belts can be Fabric or Steel cord reinforced
- The belt must be stiff enough to be self supporting in tube form
- The belt edge sections must be flexible in the transverse direction to allow for the overlap folding
- Steel cord belts have transverse fabric layers to ensure sufficient self supporting stiffness
- Pipe Diameter (D) = Belt width / 4
- A Larger Pipe Diameter requires an increased belt transverse stiffness to maintain the tubular shape
- A Smaller Pipe Diameter requires less belt transverse stiffness to maintain the tubular shape than a larger diameter pipe
- Maximum lump size = 25% to 33% of Pipe Diameter (use lower % for high proportion of lumps)
- Maximum Loading = < 70% of load area for small lumps
- Maximum Loading = < 60% of load area for larger lumps
- Material Surcharge Angle does not affect load capacity
- Belt Thickness affects the load area of the tube
- Even / Constant Load Feed is required to prevent overloading
- Idler Trough Angle must be set to **360** degrees for Pipe Conveyor
- The No. of Idler Rolls must be six (6) for a Pipe Conveyor
- Maximum Incline angle can be larger than for troughed conveyors, up to ~27 degrees for sluggish flowing material
- Maximum Recommended Idler rotation speed is 600 750 rpm
- Tube Fold Transition Length: Allow at least 25 to 40 x D for Folding and unfolding belt for Fabric belts (use larger value for large Pipe Dia)

- Tube Fold Transition Length: Allow at least 40 to 50 x D for Folding and unfolding belt for Steel belts (use larger value for large Pipe Dia)
- Carry side belt resistance is normally higher than for a similar capacity troughed conveyor due to less load area availability and higher proportion of belt mass to material conveyor material mass
- Return belt resistance is normally substantially higher than conventional troughed conveyors due to larger number of return belt rollers (rim drag is increased)
- The **VISCO calculation method** must be used Pipe Conveyors
- Check the minimum Curve Radius required for a each curve in Pipe Conveyor. Refer to the Horizontal Curve Calculations help topic for an explanation.

The required minimum length of the transition is governed by limiting the edge tension rise and also limiting the center tension drop which results for the edges being stretched.

Pipe Conveyors - Horizontal and Vertical Curve Calculations

Pipe Conveyor Curves

In a Pipe Conveyor curve, the portion of the belt furthest away from the centre of the curve is stretched while the portion or half of the belt on the inside of the curve is compressed into a shorter length. The belt is under tension and the change in tension Δ delta T is added to the outside portion of the belt and a corresponding reduction in tension is applied to inside portion of the belt because the average tension across the belt width remains a constant.

We need to ensure that the rise in tension does not exceed the working tension of the belt and also ensure that the reduction in tension on the inside does not force the belt into compression because it will buckle.

The Pipe Conveyor Curve Calculations must be performed **for each Vertical and Horizontal curve** in the pipe conveyor.

Design of curves for a Pipe Conveyor

One the main advantages of Pipe Conveyors is that they can negotiate relatively small radius Horizontal curves when compared to conventional Troughed conveyors. Each vertical and horizontal curve in a Pipe Conveyor needs to be checked for:

- 1. Belt Tube Outside belt tension rise too high a tension will over-stress the belt
- 2. Belt Tube Inside belt tension fall too low a tension will make the belt go into compression and cause tube and belt buckling
- 3. Concave Vertical curves must have sufficient radius to ensure that the belt does not tend to lift off the lower idlers and cause the tube to be compressed against the upper idler rollers.

The belt lift is caused by the belt tension resultant force from the change in vertical angle. This calculation is the same as for a Troughed conveyor.

R Т ۲

- 4. Concave and Convex vertical curves have a Belt Tube Outside (upper half) belt tension rise too high a tension will over-stress the belt
- 5. Concave and Convex vertical curves have a Belt Tube Inside (lower half) belt tension fall too low a tension will make the belt go into compression and cause tube and belt buckling

The required minimum concave curve radius for belt lift off for Item no. 3 above is calculated as it is for Troughed conveyors and is shown in the Vertical Curves Report.

For each Concave and Convex vertical curve and each Horizontal Curve in a Pipe a Conveyor, the **Calculate Pipe Conveyor Curve** calculation under the main form **Calcs** menu must be used to check for high and low tensions in the curve. Refer to the Calcs menu shown below.

pper Pull-out Force	Feeder Load	Discha	arge Tr	ajectory	Transition Dis	stance	Pulley Inertia	Verti	cal Curves	Pulley Calcs	General Calcs	
onvex Curve - Buck	ling Convex	Curve - E	dge Te	ension Ris	e Concave	Curve F	Radius - Belt Lif	t-off	Pipe Conve	yor Curve		
Pipe Conveyor Cun	ve - Belt Tensio	n Rise a	nd Buc	kling Calc	ulation Inputs							
Curve Description		Pipe Cor	nveyor	PC01 Hor	izontal Curve	P25 - 4	00m Radius 27	71kN				
Belt Tension at Cun	/e			Tu	271	kN						
Belt Width				w	1450	mm	Pipe Diame	eter [4	00 mm		
Belt Modulus		100800		E	10800	kN/m						
Curve Radius				R	400	m		_	a			
Idler Spacing				Is	1	m						
Idler Troughing Ang	le			Та	360	deg						
Belt Rated Working	Tension		209	Tr	209	kN/m	303.0	5				
Minimum Belt (Inside	e) Tension %		Т	min%	15	% (at c	centre) default :	=5%	Calcu	late Tube Te	nsions	
Tube Belt Tension	Rise and Fall C	alculation	n Resul	ts								
Tension Rise in Tub	e Outer Fibres		-	Tr(out)	73.08	kN						
Tension Fall in Tube	e Inside Radius	Fibres		Tr(in)	-73.08	kN			Vie	ew / Print Rep	port	
Belt Tension in Tub	e Outer Fibres		1	T(out)	344.08	kN	> 303.05 kN Hi	gh Te	nsion			
Belt Tension in Tub	e Inside Radius	Fibres	-	r(in)	197.92	kN						

- Enter the input values for the curve under consideration. You can enter a **Curve Description** which shows the location of each curve so that this description can be used to identify which curve has been calculated.
- Enter the Belt Width and Pipe Diameter in mm
- Enter the Belt Modulus, Curve Radius and Idler Spacing
- Enter the Trough Angle. It must be 360 degrees for a pipe conveyor
- Enter the Belt Rated Working Tension in kN/m width
- Enter the **Minimum Tension** as a percentage of Rated Tension. Default value is 5% minimum belt tension, less than this may result in belt buckling due to the belt going into compression
- Press the Calculate Tube Tensions button
- The program will calculate the rise in tension in the outer half of the belt. The belt is stretched through a further distance in the outside of the curve and travels through a shorter distance in the inside of the curve.
- Curve radius plan view here

Pipe Conveyor Curve Calculation Report - Tension too low

After doing the Pipe Conveyor Curve Calculation as described above, you can View and Print a report for each curve in the Pipe Conveyor

22 Jan 2018 1	1:44 Pipe (Conveyor	Curve Cal	culation	Page 1/1				
	Н	elix Techno	logies Pty Ltd	ies Pty Ltd					
Project	Demo Pipe Conveyor		Client	ABC Engineering					
Project No.	Pipe Conveyor Problems		Prepared By	PCB					
Conveyor No.	Pipe Conveyor PC01		Design Date	19 January 2018					
	Pipe Conveyor Curve	- Belt Tens	ion Rise and E	Buckling Calculation					
Input Data									
Curve Descrip	tion Pipe C	onveyor PC	01 Horizontal	Curve P25 - 400m Rad	dius 100kN				
Belt Tension a	t Curve	Tu	100	kN					
Belt Width		W	1450	mm					
Pipe Conveyo	r Tube Diameter	D	400	mm					
Belt Modulus		E	10800	kN/m	a				
Curve Radius		R	400	m -					
Idler Spacing		Is	1	m					
Idler Trough A	ngle	Та	360	deg					
Belt Rated Wo	rking Tension	Tr	209	kN/m					
Minimum Belt	(Inside) Tension %	Tmin%	15	%					
Calculation R	esults								
Tension Rise i	n Tube Outer Fibres	Tr(out)	73.08	kN					
Tension Fall in	Tube Inside Radius Fibres	Tr(in)	-73.08	kN					
Belt Tension in	Tube Outer Fibres	T(out)	173.08	kN					
Belt Tension in	Tube Inside Radius Fibres	T(in)	26.92	kN < 45.46 kN Belt may b	Low Tension -				

Tension at inside of curve is below the minimum required tension of 15% of belt rated tension. (The 15% value is a design input value, a minimum of at least 5% is recommended)

Pipe Conveyor Curve Calculation Form - Tension too high

🖝 Helix delta-T Conveyor Design	Program -	Calculatio	ons Form 1										Х
Help Exit													
Hopper Pull-out Force Feeder Load	Discharge 1	Frajectory	Transition Dis	tance	Pulley Inertia	Vertica	Curves	Pulley Cal	cs (General C	alcs		
Convex Curve - Buckling Convex Cu	irve - Edge	Tension Ris	se Concave	Curve R	adius - Belt Lif	t-off Pi	pe Conve	eyor Curve					
Pipe Conveyor Curve - Belt Tension	Rise and Bu	ickling Cal	culation Inputs										
Curve Description	ipe Conveyo	or PC01 Ho	orizontal Curve	P25 - 40	00m Radius 27	'lkN							
Belt Tension at Curve		Tu	271	kN									
Belt Width		w	1450	mm	Pipe Diame	eter	4	00 mm					
Belt Modulus 10	00800	E	10800	kN/m									
Curve Radius		R	400	m		/	a	-					
Idler Spacing		ls	1	m	5								
Idler Troughing Angle		Ta 🛛	360	deg									
Belt Rated Working Tension	209	Tr	209	kN/m	303.0	5							
Minimum Belt (Inside) Tension $\%$		Tmin%	15	% (at c	entre) default	=5%	Calcu	Ilate Tube 1	Fensio	ons			
Tube Belt Tension Rise and Fall Cal	culation Res	ults											
Tension Rise in Tube Outer Fibres		Tr(out)	73.08	kN									
Tension Fall in Tube Inside Radius F	ibres	Tr(in)	-73.08	kN			Vie	ew / Print R	leport				
Belt Tension in Tube Outer Fibres		T(out)	344.08	kN >	303.05 kN Hi	gh Tensi	ion						
Belt Tension in Tube Inside Radius F	ibres	T(in)	197.92	kN									
											[OK	

Tension at outside of curve is above the rated tension of the belt.

Documentation ...

HELIX delta-T Documentation and Help Files 👞

Helix delta-T6 is supplied with a very comprehensive context sensitive Help file with index and search facilities.

Helix delta-T6 Help File

To get help anywhere in the program all you need to do is press F1 and the relevant Help topic will be opened to guide you through steps of using the program.

The Help file has

- 111 Topics
- 511 Local Links
- 131 Internet links
- 279 Graphics

The Help file shows the user the formulae and calculation methods used. There is a Step by Step **Getting Started guide** and the program is provided with more than 30 sample conveyor design files so that you can see samples on how to build models of all types of conveyors from Belt Feeders to long overland conveyors with multiple drives and horizontal curves.

This all adds to up to a very good help tool and it is also a valuable reference. You can download a copy of the Helix delta-T6 Help file from the Downloads page on this website or click this link: Helix delta-T6 Help file - 39Mb file size (/DownloadFiles/DeltaT6Help.zip)

System Requirements ...

HELIX delta-T System Requirements 👞

Helix delta-T6 can run on Windows® XP, Vista® and Windows® 7, 8, 8.1 and 10 on both 32bit and 64bit systems.

To run the Helix delta-T6 program you need the following:

- Personal computer which can run Windows XP or later
- Windows® XP, Vista® or Windows® 7, 8, 8.1, 10
- 32bit or 64bit operating system
- 1 Gb of RAM or more. For the Dynamic Analysis version at least 2GB RAM is recommended
- 90 Mb of Hard Disk space
- Internet Connection for installing software
- USB port (for optional USB dongle version)
- 1360 x 768 or better resolution monitor
- Printers, plotters and networks supported by Windows XP or later (Optional)
- Touch screen or Mouse and keyboard

New High Resolution PC's

Some modern Windows 10 PC's have an adjustable / custom scaling setting and these settings may not display properly in Helix delta-T6 and other older software. Use the following settings to ensure proper operation.

- Open Windows Explorer, Navigate to the Helix delta-T6 installation Directory
- Right click on the DeltaT6.exe file and select properties
- In the Compatibility Tab make the following settings

•

DeltaT6.exe Properties	Х
General Compatibility Security Details Previous Versions	
If this program isn't working correctly on this version of Windows, try running the compatibility troubleshooter.	
Run compatibility troubleshooter	
How do I choose compatibility settings manually?	
Compatibility mode	
VVINDOWS 8	
Settings	
Reduced colour mode	
8-bit (256) colour 🛛 🗸	
Run in 640 x 480 screen resolution	
Override high DPI scaling behaviour. Scaling performed by:	
System 🗸	
Disable full-screen optimisations	
Run this program as an administrator	
Change settings for all users	
OK Cancel <u>A</u> pply	

• Click Apply and then run the Helix delta-T6 program

HELIX delta-T6 - Software Versions 🕳

Helix delta-T is supplied in 3 main licensed versions:

- Demo Version evaluation only
- Standard Version < 1000tph
- Professional Version unlimited
- Dynamic Analysis Version

Demo version - Demo purposes

Static Analysis only - Limited to a fixed conveyor capacity of 77 tonnes per hour, 777 or 7777 tonnes per hour. It is also limited to a maximum of 30 day's use. Most other functions are functional. Free download to all, but remains licenced to Helix Technologies.

Standard Version - Up to 1000tph

Static Analysis only. Limited to a maximum conveyor capacity of 1000 tonnes per hour and only one drive pulley allowed in system. No Horizontal Curve design.

Professional Version - Unlimited

Static Analysis only. Unlimited - may have any conveyor capacity, any number of conveyor sections or flights, any number of drives and pulleys, any number of loading hoppers etc. The Professional Version is suitable for designing large capacity and overland conveyors and includes Horizontal curves.

Dynamic Analysis Version - includes Pro ver + flexible belt analysis

Static and Dynamic Analysis. This version of the Helix delta-T Conveyor Design Program has all the features of the Professional version plus a very powerful Dynamic Analysis section which performs 'Flexible Body' dynamic calculations of the conveyor. The designer can model what happens during the starting and stopping of the conveyor. It provides detailed graphical output of the Belt Velocities, Belt Tensions, Takeup movement etc. at any point along the conveyor during starting or stopping and under different load conditions.

Software Licensing

In addition there are Registration Code versions or USB Dongle key version of each of the above.

Registration Code version

The Registration code version can be installed on a computer after internet download. The download links are provided after purchase of a license. When it is run for the first time it will prompt the user to enter a Registration Code. There is a button on the registration form which will send the user's computer details to Helix Technologies and Helix will return a registration code which can be pasted into the Registration form to unlock the software.

Helix Website - VersionOptions

b Install Helix delta-T6 Conveyor Design License									
Helix delta-T6 Conveyor Design is currently not licensed. To install a license, enter the key you received on purchasing the product and click OK. You may continue to evaluate the product under the terms of the evaluation license by leaving the License Key blank.									
The Evaluation version of the software does not allow you to alter the conveyor capacity, it will be limted to 77tph, 777tph or 7777tph. In addition some calculations are disabled in the Demo version. The File Save menu is also									
License Key									
Visit us at: www.helixtech.com.au									
Send email request for Registration SysInfo OK									

USB Dongle version

This version is normally supplied locally in Australia only. The USB dongle version can be installed on a computer after internet download or from CD ROM disc. This version requires a special USB Dongle key from Helix Technologies to be plugged into a USB port on the computer where you want to use the delta-T6 program.

When you run the program it will check for a valid dongle and run if one is found or exit if the dongle is not present.

This dongle version can be installed on network server computer with a program shortcut installed on the work station PC's on the network and the program can then be run by clicking the shortcut, provided that the dongle is present on the workstation PC.

A Typical USB Dongle

Network Licenses

Helix delta-T6 has a new Helix Network License Manager software for multiple concurrent users. This licensing system uses a License Manager program installed on a server computer which controls the number of concurrent users on the network through a TCP/IP port on the server. This means the software can be installed on as many computers as required and it is then activated on a specific computer via TCP/IP communication with the server and License Manager program.

Prices of the multiple user Network version depends on the number of licenses and the mix of Dynamic, Professional and Standard versions of the program. Please contact sales@helixtech.com.au (mailto:sales@helixtech.com.au) for pricing.

Feature List ...

HELIX delta-T6 Version Features 👞

HELIX delta-T6 is offered in different versions. The following list shows the main features and functions available in each of the different versions.

Helix Delta-T6 Features											
Version:	Standard	Professional	Dynamic Analysis	Remarks							
General											
Conveyor Capacity	Up to 1000 tph	Unlimited	Unlimited								
Static Analysis Calculations	✓	✓	✓	Rigid Belt							
Dynamic Analysis Calculations			✓	Flexible Belt							
Number of Drive Pulleys	One	Unlimited	Unlimited	Each Pulley can have one or two drives							
Horizontal Curve Design		✓	✓	Banking angle and Belt Drift							
Calculation Method				See Calculation Methods (/DeltaT6/CalcMethods)							
CEMA	✓	✓	✓	5th Edition							
ISO 5048	✓	✓	✓	Based on DIN 22101							
Viscoelastic	✓	✓	✓	Uses Belt Rubber Rheology							
Automatic Friction Factor calculation	✓	✓	✓								
Manual Friction Factor override	✓	✓	✓	User can input f for each conveyor section							
Temperature Corrector for Friction Factor	✓	✓	✓								
Draw Conveyor Profile											
Sketch Conveyor Profile on screen	✓	✓	✓								
Drag and Drop Pulleys in sketch	✓	✓	✓								
Add any number of Pulleys	✓	✓	✓								
Draw any Pulley Wrap Angle	✓	✓	✓								
Draw any Conveyor Configuration	✓	✓	✓								
Draw Scale Drawing of Conveyor	✓	✓	✓								
Draw 3D Model of Conveyor	✓	✓	✓								
Draw Vertical Curve Dynamically	✓	✓	✓								
Draw Horizontal Curve Dynamically		✓	✓								
Equipment Databases											
Belts	✓	✓	✓								
Idlers	✓	✓	✓								
Pulleys	✓	✓	✓								
Motors	✓	✓	✓								
Gearboxes	✓	✓	✓								
Fluid Couplings	✓	✓	✓								
High and Low Speed Shaft Couplings	✓	✓	✓								
Brakes	✓	✓	✓								
Holdbacks	✓	✓	✓								
VVVF Variable Speed Starters	~	•	•	See Equipment Databases (/DeltaT6/EquipDatabases)							
Conveyor Sections / Flights											
Unlimited number of Flights	✓	✓	✓								
Unlimited Length of Conveyor	✓	✓	✓								
Vary Idler Spacing by Section	✓	✓	✓								
Vary Skirt Length	✓	✓	✓								
Input Scrapers & Ploughs	✓	✓	✓								
Manually Override Friction Factor f	✓	✓	✓								
Friction factor adjustment factor f	✓	✓	✓								
Import Conveyor Sections / Flights											
Import XYZ from CAD DXF file	✓	✓	✓								
Import XYZ from CSV (Excel®) text (.txt) file	✓	✓	✓								
Auto Add Return Belt XYZ Points	✓	✓	✓								

08/02/2019

Version Standard Professional Dynamics Analysis import NV2 from Beltsatt ^w BCK file /		Heli	x Delta-T6 Fe	atures	
VersionStandard/Foressional Analysis (Remarks Import Y/2 from Beltsat** BCK file ✓ ✓ Take-up Calculations ✓ ✓ Allow user Takeup Mass Calculation ✓ ✓ Allow user Takeup Mass Calculation ✓ ✓ Check Belt Sag over all sections ✓ ✓ Vertical Gravity Takeup ✓ ✓ Horizontal Minch Takeup ✓ ✓ Fraction Check for Running / Starting / Braking ✓ ✓ ✓ Conveyor Drives ✓ ✓ ✓ ✓ Head, Tail, Tripper, Return Drives ✓ ✓ ✓ ✓ Multiple / Unlimited Drive Pulleys in any position ✓ ✓ ✓ Full and Empty Start Factor Backstop Torque Calculation ✓				Dynamic	
import XY2 from Beltstar® BCK file Takeup Galautions Allow user Takeup Mass Input Automatic Takeup Mass Calculation Allow user Takeup Galaution Allow user Takeup Galaution Vertical Gravity Takeup Vertical Gravity Takeup Conveyor Drives Vertical Gravity Takeup Conveyor Drives Vertical Gravity Takeup Vertical Gravity Takeup Vertical Gravity Takeup Conveyor Drives Vertical Gravity Takeup Pathone Gravity Dives Conveyor Drives Vertical Gravity Dives Vertical Gravity	Version:	Standard	Professional	Analysis	Remarks
Take-up Calculation Automatic Takeup Mass Calculation Check Belt Sag over all sections Vertical Gravity Takeup Horizontal Winch Takeup Practical Gravity Takeup Horizontal Winch Takeup Fraction Otheck for Running / Starting / Braking Conveyor Drives Nutliple / Unlimited Drive Pulleys in any position Sag Conveyor Drives Multiple / Unlimited Drive Pulleys in any position Sackstop Torque Calculation Add Inertia Fixwheels Input Speed Valcoting Ramp Input Speed Valcoting Ramp Input Speed Valcoting Ramp Input Braking Torque Carves Input Braking Torque on Brake Only Pulley Input Braking Torque on Brake Only Pulley Input Braking Torque on Brake Only Pulley Input Braking Torque on Drive Pulley Input Braking Torque on Drive Pulley Input Braking Torque on Drive Pulley <t< td=""><td>Import XYZ from Beltstat™ BCK file</td><td>✓</td><td>✓</td><td>✓</td><td></td></t<>	Import XYZ from Beltstat™ BCK file	✓	✓	✓	
Allow user Takeup Mass Input Automatic Takeup Mass Calculation Check Belt Sag over all sections Vertical Gravity Takeup Horizontal Gravity Takeup Horizontal Gravity Takeup Horizontal King (Starting / Traction Check for Running / Starting / Conveyor Drives Conveyor Drives Head, Tail, Tripper, Return Drives Multiple / Unlimited Drive Pulleys in any position Starting Torque Factor input Sact Tarting (Check Torque Carbon Multiple / Unlimited Drive Pulleys in any position Starting Torque Calculation Head, Tail, Tripper, Return Drives Head, Tail, Tripper, Return Drives Multiple / Unlimited Drive Pulleys in any position Starting Torque Factor input Sact Torque Carbon Multiple / Unlimited Drive Pulleys in any position Starting Torque Carbon Multiple / Unlimited Drive Pulleys in any position Starting Torque Calculation Add Inertia Flywheels Multiple / Unlimited Drive Pulley Input Speed vs Torque Curves Input Speed vs Torque Curves Input Braking Torque on Drive Pulley Multiple / Unlimited Drive Pulley Mignut Cashing Torque on Drive Pulley Mignue Taking Torque on Brake Only Pulley Prake Disc Temperature Rise Calculation Multiple / Unlimited Drive Rise Calculation Mignue Cashing Stopping Control Mignue Cashing Stopping Control Mignue Takeup Rise Calculation Multiple / Unlimited Drive Ri	Take-up Calculations				
Automatic Takeup Mass Calculation Increase Description Increase Description Increase Description Increase Description Increase Description Increase Description Increase Description 	Allow user Takeup Mass Input	✓	✓	✓	
Check Bell Sag over all sections Vertical Gravity Takeup Vertical Gravity Take	Automatic Takeup Mass Calculation	✓	✓	✓	
Vertical Gravity Takeup V V Horizontal Gravity Takeup V V Horizontal Winch Takeup V V Horizontal Winch Takeup V V Urraction Check for Running / Starting / Braking V V Lock Take-up on Stopping V V Conveyor Drives V V Multiple / Unlimited Drive Pulleys in any position See Dynamic Starting Starting Torque Factor input V V Backstop Torque Calculation V V Add Inertia Flywheels V V Input Speed vs Torque Curves V V Input Braking Torque on Brake Only Pulley V V Input Braking Torque on Drive Pulley V V Input	Check Belt Sag over all sections	✓	✓	✓	
Horizontal Gravity Takeup Horizontal Winch Takeup Praking Lock Take-up on Stopping Conveyor Drives See Dynamic Starting (DeltaT6/DynamicStarting) East, Tail, Tripper, Return Drives Multiple / Unlimited Drive Pulleys in any position Starting Torque Factor input Backstop Torque Calculation Add Inertia Flywheels Input Speed vs Torque Curves Input Speed vs Torque Curves Input Time vs Speed Velocity Ramp Brakes and Stopping Input Time vs Speed Velocity Ramp Brakes and Stopping Input Time vs Speed Velocity Ramp Brake Caliper Selection Brake Caliper Selection Brake Caliper Selection Brake Disc Staring & Inertia Calic Brake Disc Staring & Inertia Calculation Brake Disc Staring & Inertia Calculation So Soda Brake Disc Staring & Inertia Calculation C	Vertical Gravity Takeup	✓	✓	✓	
Horizontal Winch Takeup I'raction Check for Running / Starting / Braking Lock Take-up on Stopping Lock Take-up on Stopping Lock Take-up on Stopping Lock Take-up on Stopping See Dynamic Starting / Joint Topper, Return Drives I'raction Check for Running / Starting Conveyor Drives Conveyor Drives I'raction Check for Running / Starting I'raction Check for Running / Starting I'raction Starting I'ract	Horizontal Gravity Takeup	✓	✓	✓	
Traction check for Running / Starting / Braking Lock Take-up on Stopping Lock Take-up on Stopping Lock Take-up on Stopping Lock Take-up on Stopping Lock in belt stretch to prevent excessive belt seg Lock in belt stretch to prevent excessive belt seg See Dynamic Starting (/DetaT6/DynamicStarting) Head, Tail, Tripper, Return Drives / / / / / / / / / / / / / / / / / / /	Horizontal Winch Takeup	✓	✓	✓	
Braking Image: Construct and the set of th	Traction Check for Running / Starting /	•	•	•	
Lock Take-up on Stopping Lock in belt stretch to prevent excessive belt sag Conveyor Drives See Dynamic Starting (/DeltaT6/DynamicStarting) Head, Tail, Tripper, Return Drives Can have two motors on each drive pulley Starting Torque Factor input Dustion Can have two motors on each drive pulley Start Factor Backstop Torque Calculation Can have two motors on each drive pulley Start Factor Backstop Torque Calculation Can have two motors on each drive pulley Start Factor Backstop Torque Calculation Can have two motors on each drive pulley Start Factor Backstop Torque Calculation Can have two motors on each drive pulley Start Factor Input Speed vs Torque Curves Contract Starting Torque on Drive Pulley Input Brakes and Stopping Contract Start Sta	Braking	✓	✓		
Conveyor Drives See Dynamic Starting (/DeltaT6/DynamicStarting) Head, Tail, Tripper, Return Drives Image: Conveyor Drive Pulleys in any position Starting Torque Factor input Image: Conveyor Drive Pulleys in any position Starting Torque Factor input Image: Conveyor Drive Pulleys in any position Starting Torque Factor input Image: Conveyor Drive Pulleys in any position Starting Torque Calculation Image: Conveyor Drive Pulley Add Inertia Flywheels Image: Conveyor Drive Pulley Input Time vs Speed Velocity Ramp DC, Silp Ring WR Motors, Fluid Couplings etc. Input Time vs Speed Velocity Ramp DC, WVF Variable Speed Drives Brakes and Stopping Image: Conveyor Drive Pulley Input Braking Torque on Drive Pulley Image: Conveyor Drive Pulley Input Braking Torque on Drive Pulley Image: Conveyor Drive Pulley Input Braking Torque on Drive Pulley Image: Conveyor Drive Pulley Input Brake Caliper Selection Image: Conveyor Drive Pulley Brake Caliper Selection Image: Conveyor Drive Pulley Brake Caliper Selection Image: Conveyor Drive Pulley Calculate Discis Sizing & Inertia Calc Image: Conveyor Drive Pulley Brake Caliper Selection Image: Conveyor Drive Pulley <td>Lock Take-up on Stopping</td> <td></td> <td></td> <td>•</td> <td>Lock in belt stretch to prevent excessive belt sag</td>	Lock Take-up on Stopping			•	Lock in belt stretch to prevent excessive belt sag
Head, Tail, Tripper, Return Drives Image: Construction of primit cuturing of the pulley of the p	Conveyor Drives				See Dynamic Starting
Induction of the second	Head Tail Tripper Peturn Drives				
Wildinger Of infinited Drive Pureys in any position Can have two motors on each drive pulley Starting Torque Factor input ✓ Full and Empty Start Factor Starting Torque Factor input ✓ ✓ Full and Empty Start Factor Backstop Torque Calculation ✓ ✓ ✓ ✓ Add Inertia Flywheels ✓ ✓ ✓ ✓ ✓ ØDL, Slip Ring WR Motors, Fluid Couplings etc. Input Time vs Speed Velocity Ramp ✓ ✓ ✓ ✓ ✓ ✓ ØDL, Slip Ring WR Motors, Fluid Couplings etc. ØDL, Slip Ring WR Motors, Fluid Couplings etc. Not on speed Start Each Start Stopping Torque on Drive Pulley ✓ ✓ ✓ ØDL, Slip Ring WR Motors, Fluid Couplings etc. Not on speed Start Each Stop Start Each Start Each Stop Start Each Start Each Start Each Stop Start Each Star	Multiple (Uplimited Drive Dullays in any	•	•	•	
Starting Torque Factor input Full and Empty Start Factor Backstop Torque Calculation 	position		•	•	Can have two motors on each drive pulley
Backstop Torque Calculation Add Inertia Flywheels Add Inertia Flywheels DOL, Slip Ring WR Motors, Fluid Couplings etc. DDU Time vs Speed Velocity Ramp DC, VVVF Variable Speed Drives Brakes and Stopping DC, VVVF Variable Speed Drives Brakes and Stopping DC, VVF Variable Speed Drives DC, VVF Variable Speed	Starting Torque Factor input	✓	✓	✓	Full and Empty Start Factor
Add Inertia Flywheels ✓ ✓ Input Speed vs Torque Curves ✓ ØL, Slip Ring WR Motors, Fluid Couplings etc. Input Brakes and Stopping ✓ DC, VVVF Variable Speed Drives Brakes and Stopping ✓ ✓ Input Braking Torque on Drive Pulley ✓ ✓ Brake Disc Sizing Almertia Calc ✓ ✓ Brake Disc Sizing Almertia Calc ✓ ✓ Calculate Braking / Coasting Distance ✓ ✓ Calculate Discharge Volume Braking / Coasting ✓ ✓ Coasting ✓ ✓ ✓ Velocity Ramp Stopping Control ✓ ✓ ✓ Bet Tension & Friction Calculation ✓ ✓ ✓ ✓<	Backstop Torque Calculation	✓	✓	✓	
Input Speed vs Torque Curves Input Time vs Speed Velocity Ramp Brakes and Stopping Input Braking Torque on Drive Pulley Input Braking Torque on Brake Only Pulley Input Braking Stopping Control Input Braking / Ocasting Distance Iso So48 Iso So48 Iso So4 Iso So48 Iso So4 Iso So48 Iso So4 I	Add Inertia Flywheels	✓	✓	✓	
Input Time vs Speed Velocity Ramp DC, WVF Variable Speed Drives Brakes and Stopping Input Braking Torque on Drive Pulley Input Braking Torque on Brake Only Pulley Input Braking Torque on Brake Ocation Input Braking Torque on Brake Ocation Input Brake Disc Sizing & Inertia Calc Input Brake Disc Sizing & Inertia Calc Inertia Flywheels Ineritia Flywheels Ineria F	Input Speed vs Torque Curves			•	DOL, Slip Ring WR Motors, Fluid Couplings etc.
Brakes and Stopping Input Braking Torque on Drive Pulley Input Braking Torque on Brake Only Pulley Input Braking Torque on Brake Only Pulley Imput Braking Torque on Brake Only Pulley Imput Braking Torque on Brake Only Pulley Input Braking Torque on Brake Only Pulley Imput Braking Torque on Brake Only Pulley Imput Braking Torque on Brake Only Pulley Ifigh or Low Speed Brake location Imput Brake Disc Sizing & Inertia Calc Imput Brake Disc Sizing & Inertia Calc Brake Disc Temperature Rise Calculation Imput Braking / Coasting Distance Imput Braking / Coasting Distance Calculate Discharge Volume Braking / Coasting Imput Braking / Coasting Distance Imput Braking / Coasting Distance Calculate Discharge Volume Braking / Coasting Imput Braking / Coasting Imput Braking / Coasting Velocity Ramp Stopping Control Imput Belt Tension Imput Belt Tensions Sto 5048 Imput Belt Tensions Imput Belt Tensions Suitable Firction Factor during Starting and Stopping Calculation Imput Belt Tensions Imput Belt Tensions Suitable Firction Factor Surgers Imput Belt Tensions Imput Belt Tensions Imput Belt Tensions	Input Time vs Speed Velocity Ramp		İ	✓	DC, VVVF Variable Speed Drives
Input Braking Torque on Drive Pulley Input Braking Torque on Brake Only Pulley Input Braking Torque on Brake Only Pulley Igh or Low Speed Brake location Rrake Caliper Selection Rrake Disc Sizing & Inertia Calc Rrake Caliper Selection Rrake Disc Sizing & Inertia Calc Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Empty Belt Tensions Running Full Belt Tensions Running Full Belt Tensions Running Empty Belt Tensions Running Full Belt Tensions Running Fu	Brakes and Stopping		İ		
Input Braking Torque on Brake Only Pulley Image: Control of Contrel of Contrel of Contrel of Contrel of Control of Control of Cont	Input Braking Torque on Drive Pulley	✓	 ✓ 	✓	
High or Low Speed Brake location Image: Control of the second	Input Braking Torque on Brake Only Pulley		 ✓ 	✓	
Brake Caliper Selection Image: Control Brake Disc Sizing & Inertia Calc Brake Disc Temperature Rise Calculation Image: Control Brake Disc Temperature Rise Calculation Calculate Braking / Coasting Distance Image: Coasting Distance Calculate Discharge Volume Braking / Coasting Distance Image: Coasting Distance Calculate Discharge Volume Braking / Coasting Distance Image: Coasting Distance Calculate Discharge Volume Braking / Coasting Distance Image: Coasting Distance Calculate Discharge Volume Braking / Coasting Distance Image: Coasting Distance Velocity Ramp Stopping Control Image: Coasting Distance Belt Tension & Friction Calculations Image: Coasting Distance Iso 5048 Image: Coasting Distance Image: Coasting Distance CEMA Image: Coasting Distance Image: Coasting Distance Viscoelastic Image: Coasting Distance Image: Coasting Distance Temperature Correction Kt Image: Coasting Coasting Distance Image: Coasting Distance Fixed Friction Factor Calculation Image: Coasting Distance Image: Coasting Distance Suitable for Overland Conveyors Image: Coasting Distance Image: Coasting Distance Suitable for Wide Idler Spacing Friction & Power Calculations Image: Coasting D	High or Low Speed Brake location	✓	 ✓ 	✓	
Brake Disc Sizing & Inertia Calc Image: Construct of the second seco	Brake Caliper Selection	✓	✓	✓	
Brake Disc Temperature Rise Calculation Image: Calculate Discharge Volume Braking / Coasting Distance Image: Calculate Discharge Volume Braking / Coasting Volume Braking / Solume Braking / Coasting Distance Braking / Coasting Braking / Coasting Proteing Arables Friction Factor during Starting and Stopping Calculations Image: Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Solume Braking / Soluma Arablysis / Voluta T6/Design Reports / (Brake Disc Sizing & Inertia Calc		· ·		
Add Inertia Flywheels Image: Construction of the second secon	Brake Disc Temperature Rise Calculation	, ,	· ·	· ·	
Calculate Braking / Coasting Distance ✓ ✓ Calculate Braking / Coasting Volume Braking / Coasting ✓ ✓ Calculate Discharge Volume Braking / Coasting ✓ ✓ Velocity Ramp Stopping Control ✓ ✓ Belt Tension & Friction Calculations ✓ ✓ ISO 5048 ✓ ✓ Based on DIN 22101 CEMA ✓ ✓ ✓ Viscoelastic ✓ ✓ ✓ Temperature Correction Kt ✓ ✓ ✓ Fixed Friction Factor Calculation ✓ ✓ ✓ User Controlled Friction Factor ✓ ✓ ✓ Automatic Friction Factor Calculation ✓ ✓ ✓ Reduced Friction on Declines >2.5% slope ✓ ✓ ✓ Suitable for Overland Conveyors ✓ ✓ ✓ Suitable for Wide Idler Spacing Friction & Power Calculations ✓ ✓ ✓ Variable Friction Factor during Starting and Stopping Calculations ✓ ✓ ✓ Variable Friction Factor during Starting and Stopping Calculations ✓ ✓ ✓ Varia	Add Inertia Flywheels	, ,	· ·	· ·	
Calculate Discharge Volume Braking / Coasting Velocity Ramp Stopping Control Belt Tension & Friction Calculations ISO 5048 CEMA Viscoelastic Temperature Correction Kt Fixed Friction Factor Calculation Uses Belt Rubber Rheology Temperature Correction Kt Fixed Friction Factor Calculation User Controlled Friction Factor Automatic Friction Factor Reduced Friction on Declines >2.5% slope Suitable for Overland Conveyors Suitable for Wide Idler Spacing Friction & Power Calculations Flexible Body Dynamic Analysis Tension calculations Variable Friction Factor during Starting and Stopping Calculations Variable Friction Factor during Starting and Stopping Calculations Funning Full Belt Tensions Running Full Belt Tensions	Calculate Braking / Coasting Distance	, ,	· ·	· ·	
Coasting Coasting Velocity Ramp Stopping Control Image: Coasting Control Belt Tension & Friction Calculations Image: Coasting Control ISO 5048 Image: Coasting Control CEMA Image: Coasting Control Viscoelastic Image: Coasting Control Image: Controlled Friction Factor Calculation Image: Coasting Control Itsed Friction Factor Calculation Image: Coasting Control Automatic Friction Factor Calculation Image: Coasting Control Automatic Friction Factor Calculation Image: Coasting Control Suitable for Overland Conveyors Image: Coasting Control Conveyors Suitable for Wide Idler Spacing Friction & Power Calculations Image: Coasting Control Conveyors Flexible Body Dynamic Analysis Tension calculations Image: Coasting Control Conveyors Variable Friction Factor during Starting and Stopping Calculations Image: Coasting Conveyors Variable Friction Factor during Starting and Stopping Calculations Image: Coasting Conveyors Running Full Belt Tensions	Calculate Discharge Volume Braking /	•	•	•	
Velocity Ramp Stopping Control Image: Control Calculations Belt Tension & Friction Calculations Image: Control Calculations ISO 5048 Image: Control Calculations ISO 5048 Image: Control Calculation CEMA Image: Control Calculation Viscoelastic Image: Control Calculation Image: Controlled Friction Factor Calculation Image: Controlled Friction Factor Calculation User Controlled Friction Factor Calculation Image: Controlled Friction Factor Calculation Nationatic Friction Factor Calculation Image: Controlled Friction Factor Calculation Reduced Friction on Declines >2.5% slope Image: Controlled Friction Factor Calculation Suitable for Overland Conveyors Image: Controlled Friction & Power Calculations Suitable for Wide Idler Spacing Friction & Power Calculations Image: Controlled Friction Factor during Starting and Stopping Calculations Yariable Friction Factor during Starting and Stopping Calculations Image: Control Control Control Calculation Calculations Tension Summary Report Image: Control Calculation Calculations Image: Control Calculation Calculation Calculations Running Full Belt Tensions Image: Control Calculation Calculations Image: Control Calculation Calculation Calculations Running Empty Belt Tensions Image: Co	Coasting	-	✓	 ✓ 	
Belt Tension & Friction Calculations Image: Constraint of the system	Velocity Ramp Stopping Control			✓	
ISO 5048Image: style in the styl	Belt Tension & Friction Calculations				
CEMAImage: style="text-align: center;">Sth editionViscoelasticImage: style="text-align: center;">ViscoelasticImage: style="text-align: center;">ViscoelasticImage: style="text-align: center;">ViscoelasticTemperature Correction KtImage: style="text-align: center;">ViscoelasticImage: style="text-align: center;">ViscoelasticFixed Friction Factor CalculationImage: style="text-align: center;">ViscoelasticImage: style="text-align: center;">ViscoelasticUser Controlled Friction Factor CalculationImage: style="text-align: center;">ViscoelasticAutomatic Friction Factor CalculationImage: style="text-align: center;">ViscoelasticAutomatic Friction Factor CalculationImage: style="text-align: style="text-align: center;">ViscoelasticSeed Controlled Friction Factor CalculationImage: style="text-align: style="text-a	ISO 5048	✓	✓	✓	Based on DIN 22101
ViscoelasticImage: starting and starting and starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: starting full Belt TensionsImage: starting full Belt TensionsViscoelasticImage: star	СЕМА	✓	 ✓ 	✓	5th edition
Temperature Correction Kt Image: Controlled Friction Factor Calculation Fixed Friction Factor Calculation Image: Controlled Friction Factor Calculation Automatic Friction Factor Calculation Image: Controlled Friction Factor Calculation Reduced Friction on Declines >2.5% slope Image: Controlled Friction Factor Calculation Suitable for Overland Conveyors Image: Controlled Friction Factor Calculation Suitable for Wide Idler Spacing Friction & Power Calculations Image: Controlled Friction Factor Calculations Flexible Body Dynamic Analysis Tension calculations Image: Controlled Friction Factor Calculations Variable Friction Factor during Starting and Stopping Calculations Image: Controlled Friction Tension Starting and Stopping Full Belt Tensions Running Full Belt Tensions Image: Control Friction Factor Structure Running Empty Belt Tensions Image: Control Friction Factor Structure	Viscoelastic	✓	 ✓ 	✓	Uses Belt Rubber Rheology
Fixed Friction Factor Calculation Image: Controlled Friction Factor Automatic Friction Factor Calculation Image: Controlled Friction Factor Calculation Reduced Friction on Declines >2.5% slope Image: Controlled Friction on Declines >2.5% slope Suitable for Overland Conveyors Image: Controlled Friction Sector Calculation Sector Calculations Suitable for Wide Idler Spacing Friction & Power Calculations Image: Controlled Friction Factor during Starting and Stopping Calculations Variable Friction Factor during Starting and Stopping Calculations Image: Controlled Friction Control Contervity Contrel Contentent Control Control Control Control Control	Temperature Correction Kt	✓	✓	✓	
User Controlled Friction Factor Image: Controlled Friction Factor Calculation Automatic Friction Factor Calculation Image: Controlled Friction Factor Calculation Reduced Friction on Declines >2.5% slope Image: Controlled Friction Calculation Suitable for Overland Conveyors Image: Controlled Friction Calculation Suitable for Wide Idler Spacing Friction & Image: Controlled Friction Calculations Power Calculations Image: Controlled Friction Calculations Flexible Body Dynamic Analysis Tension calculations Image: Controlled Friction Factor during Starting and Stopping Calculations Variable Friction Factor during Starting and Stopping Calculations Image: Controlled Friction Calculations Running Full Belt Tensions Image: Controlled Friction Calculations Running Full Belt Tensions Image: Controlled Friction Calculations Automatic Friction Factor during Starting and Stopping Calculations Image: Controlled Friction Factor during Starting and Stopping Calculations Running Full Belt Tensions Image: Controlled Friction Factor Stopping Image: Controlled Friction Factor Calculations Running Full Belt Tensions Image: Control Factor Calculations Image: Controlled Friction Factor Calculations Running Empty Belt Tensions Image: Control Factor Calculations Image: Control Factor Calculations	Fixed Friction Factor Calculation	✓	 ✓ 	✓	
Automatic Friction Factor Calculation Image: Calculation on Declines >2.5% slope Image: Calculation on Declines >2.5% slope >2.5%	User Controlled Friction Factor	✓	 ✓ 	✓	
Reduced Friction on Declines >2.5% slope Applied to CEMA - for ISO use f=0.012 Suitable for Overland Conveyors Dynamic analysis recommended for 800kW and up Suitable for Wide Idler Spacing Friction & Power Calculations See Dynamic Analysis recommended for 800kW and up Flexible Body Dynamic Analysis Tension calculations See Dynamic Analysis (/DeltaT6/DynamicAnalysis) Variable Friction Factor during Starting and Stopping Calculations Adjusts friction to belt tension and sag during starting / stopping Running Full Belt Tensions See Design Reports (/DeltaT6/DesignReports) Running Empty Belt Tensions See Design Reports	Automatic Friction Factor Calculation	✓	✓	✓	
Suitable for Overland Conveyors Image: Conveyors Dynamic analysis recommended for 800kW and up Suitable for Wide Idler Spacing Friction & Power Calculations Image: Conveyors Image: Conveyors Flexible Body Dynamic Analysis Tension calculations Image: Conveyors Image: Conveyors Variable Friction Factor during Starting and Stopping Calculations Image: Conveyors Image: Conveyors Running Full Belt Tensions Image: Conveyors Image: Conveyors Image: Conveyors Running Empty Belt Tensions Image: Conveyors Image: Conveyors Image: Conveyors See Design Reports Image: Conveyors Image: Conveyors Image: Conveyors Running Empty Belt Tensions Image: Conveyors Image: Conveyors Image: Conveyors See Design Reports Image: Conveyors Image: Conveyors Image: Conveyors Running Empty Belt Tensions Image: Conveyors Image: Conveyors Image: Conveyors See Design Reports Image: Conveyors Image: Conveyors Image: Conveyors Running Empty Belt Tensions Image: Conveyors Image: Conveyors Image: Conveyors See Design Reports Image: Conveyors Image: Conveyors Image: Conveyors Image: Conveyor	Reduced Friction on Declines >2.5% slope	✓	✓	✓	Applied to CEMA - for ISO use f=0.012
Suitable for Wide Idler Spacing Friction & Image: Construction & Power Calculations Image: Construction & Flexible Body Dynamic Analysis Tension See Dynamic Analysis calculations Image: Construction & Variable Friction Factor during Starting and Image: Construction & Stopping Calculations Image: Construction & Tension Summary Report Image: Construction & Running Full Belt Tensions Image: Construction & Running Empty Belt Tensions Image: Construction &	Suitable for Overland Conveyors		•	•	Dynamic analysis recommended for 800kW and up
Flexible Body Dynamic Analysis Tension See Dynamic Analysis calculations (/DeltaT6/DynamicAnalysis) Variable Friction Factor during Starting and Adjusts friction to belt tension and sag during starting / stopping Stopping Calculations Adjusts friction to belt tension and sag during starting / stopping Running Full Belt Tensions See Design Reports Running Empty Belt Tensions Image: See Design Reports	Suitable for Wide Idler Spacing Friction &	•	•	•	
calculations (/DeltaT6/DynamicAnalysis) Variable Friction Factor during Starting and Stopping Calculations Adjusts friction to belt tension and sag during starting / stopping Tension Summary Report See Design Reports (/DeltaT6/DesignReports) Running Full Belt Tensions Image: Sec Design Reports Running Empty Belt Tensions Image: Sec Design Reports	Flexible Body Dynamic Analysis Tension		1		See Dynamic Analysis
Variable Friction Factor during Starting and Stopping Calculations Adjusts friction to belt tension and sag during starting / stopping Tension Summary Report Running Full Belt Tensions 	calculations			 ✓ 	(/DeltaT6/DynamicAnalysis)
Stopping Calculations Image: Calculation of the service of the ser	Variable Friction Factor during Starting and		1		Adjusts friction to belt tension and sag
Tension Summary Report See Design Reports Running Full Belt Tensions ✓ ✓ Running Empty Belt Tensions ✓ ✓	Stopping Calculations			 ✓ 	during starting / stopping
Running Full Belt Tensions Image: Constraint of the second seco	Tension Summary Report		1		
Running Empty Belt Tensions	Running Full Belt Tensions	•	•	•	See Design Reports (/DeltaT6/DesignReports)
	Running Empty Belt Tensions	~	✓	✓	v = 5.00 + 00 = 00.0.11(0)01(0)

Version:Standard Professional Dynamic Analysis

	Helix	Delta-T6 Fe	atures	
Versien	Ctondord	Ducfacciona	Dynamic	Demente
version:	Standard	Professiona	Analysis	Remarks
Running Levels & Inclines Loaded Belt Tensions	✓	✓	•	
Running Levels & Declines Loaded Belt	•	✓	•	
Starting Fully Loaded Belt Tensions	1			
Starting Funty Belt Tensions	· •	· · ·		
Braking Fully Loaded Belt Tensions		• •		
Braking Funty Belt Tensions		• •		
Coasting Fully Loaded Empty Belt Tensions		• •		
Bar and Line Granks of Belt Tensions		• •		
Belt Sag Check	· •	· · ·		
Take-up Travel / Belt Stretch		• •		
Dynamic Tensions Starting / Stopping	•	•		
2D and 3D surface plot of Dynamic			•	
Tensions and Belt Velocities			✓	
Vertical Curves				
Concave and Convex Curves				
Belt Lift off Calculation	• •	• •	✓ ✓	Running Full/Empty, Starting Full/Empty,
				Braking full/Empty
Worn Beit Allowance for Lift off		✓		
Edge Tension Rise		✓	✓	
Limit Centre Tension		✓		
	✓	✓	✓	
Dynamic Drawing of Vertical Curves on	✓	✓	 ✓ 	
Horizontal Curves				
Calculate Curve Matination Farme		✓	•	
Calculate Curve Motivation Force		✓	•	Delensing force for holt metarial and friction
		✓	•	Balancing force for beit, material and metion
		✓	•	
Calculates Balt Drift for Dunning and		₩	✓	Cas Harizantal Curries
Calculates Bell Drift for Running and		✓	✓	See Horizontal Curves
				Easy to see all belt drift conditions on one
		•	•	graph for each curve point
View and Print Horizontal Curve Report		✓	✓	Detailed View of the calculations
Pulley & Shaft Calculations				
Shaft Deflection at Hub	✓	✓	✓	
Shaft Torsion / Strength	✓	✓	✓	
Running Tensions	✓	✓	✓	
Starting Tensions	✓	✓	✓	
Multiple Shaft & Bearing Combinations	✓	✓	✓	
Pulley Inertia's Calculated	✓	~	•	See Horizontal Curves (/DeltaT6/HorizontalCurves)
Pulley & Shaft Rationalisation by changing				Use Database to rationalise from a sub-set
database selection setting	•	•		of pulleys and shafts
Shaft Calculations to AS1403 Standard	Separate Program	Separate Program	Separate Program	See Helix delta-D (/DeltaT6/DeltaD)
Pipe Conveyors				See Pipe Conveyors (/DeltaT6/PipeConveyors)
Pipe Conveyor calculation using Visco Method	•	~	✓	Uses Belt Rubber Rheology
Resistance and losses include: Belt to Idler			1	
Indentation Resistance, Material and Belt		_		
Flexure losses, Idler Rotation (Rim Drag)	✓	✓		
Resistances, Belt to Idler scuffing losses				

Version:Standard Professional Dynamic Analysis

	Heli	x Delta-T6 Fea	atures	
Version:	Standard	Professional	Dynamic	Remarks
	-		Analysis	
Calculate Horizontal and Vertical Curves	✓	✓	✓	Generate individual reports on each Curve
Pipe Conveyor Idlers added to Idler	✓	✓	 ✓ 	
Pipe Cross Section	•	•	•	Easy to see Pipe Conveyor Cross Sectional image that includes relavent belt and material properties
Conveyor Starting and Stopping - Static Analysis				
System Equivalent Masses	✓	✓	✓	
Drive & Pulley Inertia Calcs	✓	 ✓ 	✓	
Belt Tension Rise % - Static	✓	•	~	Check belt safety factor starting and stopping
Starting Time Loaded, Empty	✓	✓	✓	
Stopping Time Loaded, Empty for Braking and Coasting	✓	•	✓	Match stopping times for downstream conveyors
Stopping Distance Full & Empty	✓	✓	✓	
Discharge Volume Braking & Coasting	✓	 ✓ 	✓	
Individual Drive Starting Torque factor	✓	✓	✓	
Conveyor Starting and Stopping - Dynamic Analysis				See Dynamic Analysis (/DeltaT6/DynamicAnalysis)
Graph of Belt Velocity vs Time at any pulley				
or point during Starting / Stopping			•	
Graph of Belt Tension vs Time at any pulley or point during Starting / Stopping			•	
Takeup Movement Plotted vs Time			✓	
Graph of Pulley Torque vs Time at any				
Pulley for Starting and Stopping			•	
Obtain maximum belt tensions at any pulley or point			~	Check Belt Safety Factor and Pulley Stresses
Obtain minimum belt tensions at any pulley or point			•	Design out excessive belt sag by adding flywheels or brakes - essential for long conveyors
View Holdback Torque on pulleys			•	Correctly size the holdbacks for actual runback belt tensions due to gravity and belt contraction forces
Dynamic Analysis Presentation			•	PowerPoint Presentation - ppt file (/DownloadFiles/Helixdelta- TConveyorDynamicAnalysisPresentation.ppt)
Additional / Quick Calculations				See Additional Calcs (/DeltaT6/AdditionalCalcs)
Discharge Trajectory	✓	✓	✓	
Hopper Pull-out Force - Basic	✓	✓	✓	
Hopper Pull-out Force - Bruff's Method	✓	✓	 ✓ 	Belt Feeder Design
Hopper Pull-out Force - Theoretical Method (TUNRA)	✓	•	✓	Belt Feeder Design
Belt Turnover Calculator	✓	✓	✓	See Belt Turnovers (/DeltaT6/BeltTurnovers)
Pulley Inertia	✓	 ✓ 	✓	
Pulley Wrap Angle Calculation	✓	✓	✓	
Drive Traction Calculation	✓	✓	✓	
Pulley Bearing L10h life	✓	✓	✓	
Vertical Curve Lift-off radius	✓	✓	✓	
Vertical Curve Buckling Radius	✓	✓	✓	
Vertical Curve Edge Tension Radius	✓	✓	 ✓ 	
Horizontal Curve Banking Angle and Belt Drift		•	✓	
Equipment Schedules from Multiple				Extract lists from multiple conveyor design
Design Files				files

Version:Standard Professional Dynamic Analysis

	Helix	d Delta-T6 Fea	atures	
Version	:Standard	Professional	Dynamic Analysis	Remarks
Design Summary	✓	✓	✓	
Pulley & Shaft Lists	✓	✓	✓	
Idlers	✓	✓	✓	
Motors	✓	✓	✓	
Gearboxes and Fluid Couplings	✓	✓	✓	See Belt Turnovers (/DeltaT6/BeltTurnovers)
Brakes and Holdbacks	✓	✓	✓	
Belt Tension Comparison Report	•	~	•	For example compare existing conveyor belt tensions with proposed upgraded conveyor
Printing and Exporting Reports				View reports on screen or export to file formats
Number of Reports	70+	70+	80+	
Print Multiple Reports in one file	✓	✓	✓	
PDF Files	✓	✓	✓	
MS Word RTF files	✓	✓	✓	
CSV and Excel files	✓	✓	✓	
Drawing of Conveyor	✓	✓	✓	
3d model	✓	✓	✓	
Tension Graphs - Bar Graphs	✓	✓	✓	
Tension Graphs - Line Graphs	✓	✓	✓	
Dynamic Analysis Graphs 2D and 3D			•	See Dynamic Analysis (/DeltaT6/DynamicAnalysis)
Help Files				See Documentation (/DeltaT6/Documentation)
Electronic Help File	✓	✓	✓	Includes Contents, Index and Find
Context Sensitive	✓	✓	✓	Press F1 anywhere in the program for Help
Windows Format CHM format	✓	✓	✓	Based on HTML
Print your own Hardcopy manual	•	~	✓	Print the Help file by chapter or individual Help topic
Computer Operating System Compatability				See System Requirements (/DeltaT6/SystemRequirements)
Windows XP 🙆	✓	✓	✓	Requires Service Pack 3 or later
Windows Vista 🖲	✓	✓	✓	
Windows 7 🖲	✓	✓	✓	
Windows 8 and 8.1 🖲	✓	✓	✓	
Windows 10 🖲	✓	✓	✓	
Version	:Standard	Professional	Dynamic Analysis	Remarks

Pulley Shaft Design...

End of Helix Delta-T6 Conveyor Design Brochure

Helix Delta-D Pulley Shaft Design Program

Helix Delta-D program is a separate software package from Helix delta-T6

HELIX delta-D Pulley Shaft Calculation Program

Helix delta-D is an easy to use pulley shaft calculation program provided to perform conveyor pulley shaft size calculations. The program requires pulley and shaft dimensions as well as conveyor belt tensions for starting and running.

This program is based on **Australian Standard AS 1403** - **Design of rotating steel shafts.** A copy of the Australian Standard AS1403 may be obtained from Australian Standards website (http://www.saiglobal.com)

Click the following link to see a sample calculation report based on the worked example given in AS1403 Appendix F on page 45 - Worked Example Calculation AS 1403 (PDF file 89kb) AS1403 Worked Example Design report - pdf file (/DownloadFiles/HelixDeltaDShaftReport-AS1403ExamplePage45.pdf)

The program allows the user to open a new project file and then quickly add new pulleys to the list. Enter dimensions and belt tensions, select the shaft material and locking element types and then press calculate to obtain the shaft sizes required at the locking element and bearing. You can quickly and easily add new pulleys and rationalise the sizes required in order to minimise capital and spares holding cost.

The main input data required is as shown in the images below.

Main Shaft Input Form

🛥 Helix Shaft Design	- AS14	03 Example	.xml			
<u>F</u> ile <u>H</u> elp						
Pulley Shafts Project Det	ails Dat	a				
List of Pulleys Input Pul	ley Detail	S Drive Detail	s Correct	ion Factors		
Conveyor No.	CV 101		14	4 1 of 1 1 1	LA X	
Pulley Description	As 1403	3 Example			T A	
Pulley Type	Drive	*	Input	Drive Details	🗹 Auto Calc	
Belt Speed	-	3	m/s	Torque Reversals	Yes 🗸	
Diameter over Steel		1046	mm	Shaft Safety Factor	1.2	
Lagging Thickness		12	mm	Belt Tension T1 Start	516.25	kN
Pulley Mass		5286	kg	Belt Tension T2 Start	320.59	kN
Bearing Centres		2134	mm	Belt Tension T1 Run	300	kN
Locking Element Centres		1420	mm	Belt Tension T2 Run	200	kN
Bearing Housing Type		SSN/SD 🐱		Wrap Angle	180	deg
Shaft Material		CS1020 🐱		Belt Contact Angle to T1	0	deg
Shaft UTS		410	MPa	Locking Element Type	RFN7012 🗸	
Shaft Endurance Limit		185	MPa	Locking Elem. k Factor	1.3	
Shaft Modulus E		207000	MPa	Bearing k factor (fig.5)	1.5	
Shaft Size Factor ks fig.	<u>.</u>	1.782		Correction delta AS1403 fig.3	0.13	
Stress Raising Factor ks	tep	1.37		Z = R/D + delta	0.201	
Bearing Diameter Select	ed D2	280 🖌 🖌	mm	Calculated Bearing Dia D2	250.8	mm OK
Shaft Step Radius R1		20	mm	Calculated Dia. at step D3	278.5	mm OK
Selected Shaft Diameter Locking Element D4	at	300 🗸	mm	Calculated Dia. at Locking Element D4	295.1	mm OK
Shaft Diameter at Centre	D6	300	mm	Angular Deflection, radians	0.000846	rads OK
Calculated Bearing Life		418810	hrs	Linear Deflection, mm	0.817157	mm OK
Locking Element Torque	Rating	153000	OK	Linear Deflection, % span	0.0383	% OK
H-4		Bearing Cr	s	→ 1		
P0 P1 P2 P3 P4	l P5	− − D6 − ↓ P6 Locking Crs	l P7	P8 P9 P10 P11 P6 P9 P10 P11	Calculate Sł View Repo Save	naft
Series DBZRI Registered	Status Pr	o Date				

Easy to use inputs are provided on a compact form with drop down boxes for materials, shaft sizes, locking elements etc. Choose a trail diameter and press Calculate to see if the shaft you selected is OK. In addition to AS 1403 requirements, the program also calculates the shaft deflection and provides warnings if the deflection exceeds recommended values.

Drive Details Input Form

Easy to understand inputs prompt the user to enter the required data for drive shafts so that overhung loads etc. can be calculated.

Stress Raising Correction Factors are calculated automatically

Stress Raising Correction Factors are calculated automatically

AS1403 Stress Raising Correction factors are automatically looked up and calculated for you.

Lookup Data for Shaft Materials, Bearings, Locking elements is provided

ulley Shafts Shaft Materia Shaft Materia 414 434 K10 K10	Project Details als Locking Ele aftMaterial 0 0 0 0 040	Ements Bearing Ho ShaftModulusE 207000 207000 207000 207000 207000	usings Bearings L ShaftUTS 750 850 540	ocking Elem. & Brg ShaftEnduranceLirr 290 383 243
Shaft Materia Sh 414 434 K10 K10 CS	als Locking Ele aftMaterial 0 0 0 040	ements Bearing Ho ShaftModulusE 207000 207000 207000 207000	usings Bearings L ShaftUTS 750 850 540	ocking Elem. & Brg ◀ ShaftEnduranceLirr 290 383 243
Sh. 414 434 K10 K10 CS	aftMaterial 0 0 0 040 045	ShaftModulusE 207000 207000 207000 207000	ShaftUTS 750 850 540	ShaftEnduranceLirr 290 383 243
414 434 K10 K10 CS	0 0 040 045	207000 207000 207000 207000	750 850 540	290 383 243
434 K10 K10	0)40)45	207000 207000 207000	850 540	383 243
K10 K10)40)45	207000	540	243
► CS)45	207000		
CS ¹		201000	570	256
	1020	207000	410	185
CST	1030	207000	500	225
CST	1040	207000	540	243
EN	19A	207000	900	405
EN:	26	207000	930	419
EN:	25	207000	850	383
*				

Quality Control

Click the following link to see a sample calculation report based on the worked example given in AS1403 Appendix F on page 45 - Worked Example Calculation AS 1403 (PDF file 89kb) AS1403 Worked Example Design report - pdf file (/DownloadFiles/HelixDeltaDShaftReport-AS1403ExamplePage45.pdf)

Disclaimer

This program has been developed specifically for the design of Conveyor Pulley Shafts and is not intended as a general shaft design tool. It must be used by qualified persons experienced in pulley shaft design as the use of the program, and the interpretation of the calculation results, requires an understanding of the shaft design process. The shaft sizes calculated are dependent on the dimensions entered and input data for belt tensions as well as the material properties and stress raising factors used and no guarantee or warranty is given to users of this program.

Home ...